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Levi-Civita Connection

On a Riemannian manifold, there is a natural choice for which connection to use. Choosing a connection is
choosing a sense of acceleration on our manifold. For a Riemannian manifold M, a natural choice is to agree
that geodesics have 0 accelertaion. Indeed, geodesics are paths that go in a “straight line” without changing
velocity. Thus we would like a connection V such that for any geodesic (t) we have V)y(t) = 0. If we
have y(t) = (x'(¢),--- ,2™(t)) in local coordinates, this requirement is equivalent to
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That is, this is equivalent to

i (t) + @' () AF, =0 for all k.

Thus we want to choose our functions A’€ so that all geodesics satisfy the above equation. However, comparing

the above equation to the geodesic equatlon we realize that this will always be true if we choose Ak = Fk
to be the Christoffel symbols! Therefore, on a Riemannian manifold we should define our connectlon 1n
coordinates by setting

V,0; = TE.0. (C)

This definition, however, opens one important question: does this choice of connection rely on the choice of
coordinates? The answer is no, which we will prove by later defining this natural connection in a coordinate
independent way. The resulting connection is called the “Levi-Civita connection”.

Recall the connection for Euclidean space R" is given by
VxY = XY'0,.
This Euclidean connection satisfies the product rule
Vz(X,Y)=Vx (Z XiYi> =3 (XZWY'+X'(ZY") = (VzX,Y) + (X,VzY).

Additionally, observe that for any vector fields X,Y over R™, we can compute the difference of the Euclidean
connection VxY — Vy X to be

VxY - VyX = XY'0;, - YX'0; = (XY -~ Y X"0,.
But this is juts the Lie bracket [X,Y]. That is, the Euclidean connection satisfies the commutator relation

VxY - VyX = [X,Y]. (S)



It turns out that for a Riemannian manifold M, the Levi-Civita connection defined in local coordinates by (C)
also satisfies the commutator relation (S) as well as the following product rule with respect to the metric g.

V2(X,Y)y = (VzX,Y), + (X, VY),. (M)

A connection satisfying (S) is called symmetric and a connection satisfying the product rule (M) is said to be
compatible with the metric. We begin by showing the symmetry which is simply a coordinate computation.

Prop. The Levi-Civita connection as defined in coordinates by (C) is symmetric.
Proof. Compute
VxY = VyX = Vyxig, (Y70;) — Vyip, (X'0;)
= X'((8;Y7)0; + YV 5,0;) — Y7 ((0;X"); + X'V 5,0;)
= (XY79; - YX'0;) + XY/ (V,0; — V,0;)0
= [X, Y]+ X'Y/(T}; — %) 0.

Then the result follows from Fi—“j = F?Z which we can see from the definition of Christoffel symbols:

1
Iy = 59“(31'9]‘1 + 0jg1i — 19i5)

O

Next we show the Levi-Civita connection as defined in coordinates is compatible with the metric, which
follows from a substantially longer coordinate computation.

Prop. The Levi-Civita connection as defined in coordinates by (C) is compatible with the metric.
Proof. First we expand out the right side of (M).
(V2X,Y) +(X,V2Y) = (Vzro, (X'0:), Y?0;) + (X', V g1, (Y 0))) (10)
= ZF (Y (O X'0i + X'V 5,05, 0;) + X0, 0,Y70; + YV 5,0;)) (11)
= ZF(YI((0p X" + X'T%)01,05) + X (05, (0,Y' + YITY;)01)) (12)
= Z"YI Ok X"+ X'T)giy + Z° X (01Y' + YT ) gu (13)
= Z"YI0, X gij + X'0kY' gut) + Z8 XY (g1 + Thy9a0)- (14)
Next we expand out the left size of (M).
V2(X,Y) = ZF0,(X'0;,Y70;) = ZF0, (XY g;5) = ZF (Y0, X' g + X0, Y7 gij) + ZF XY Oy gs;.

Note these expansions are quite similar, and we see that in fact the right and left sides of (M) are equal so
long as we can show

gij = Thegij + Thygu-
Indeed, to show this we use the definition of the Christoffel symbols

1
Iy = igkl(aigjl + 0jg1i — 019ij)
and apply the matrix gg,,, to both sides to conclude
k 1
I Gkm = 5(8igjm + 0jgmi — Om9ij)-
Thus using the above expression twice we can compute

1 1
Thgi + T 90 = 5(@‘9@' + Okgji — 0j9ir) + 5(51@9]‘1' + 0jgik — 0igkj) = OkGij



as needed.
O

It turns out that these two properties — symmetry and metric compatibility — are quite special. In fact, on a
Riemannian manifold there will only be one connection that satisfies both properties.

Prop. (Fundamental Theorem of Riemannian Geometry). For any Riemannian manifold M, there
exists a unique connection V that is both symmetric and compatible with the metric. This connection is
called the Levi-Civita connection.

Proof in coordinates. We have already demonstrated existence, for the Levi-Civita connection is symmetric
and metric-compatible. To see why an arbitrary symmetric and metric-compatible connection V must be the
Levi-Civita connection, we work locally in coordinates (z*) and write Vy,8; = Afj. By the same computation
we performed to show symmetry of the Levi-Civita connection, we see the symmetry of V is equivalent to
Af; = A%, Similarly, we see V is compatible with the metric exactly when

hgij = Abpgi; + Aljga.

by the corresponding computation for the Levi-Civita connection; this expression is often called the first
Christoffel identity. These two requirements give a linear system of %nz (n+1) equations with the same amount
of unknowns. The trick to solve this system is to permute the first Christoffel identity to get cancellation and
solve for the sum

0igj1 + 0j9u — O1gij = (Afjgpl + Afgip) + (Ai;gpz + Aglgip) — (ALigp; + Afjgip) = 2Afjgpl' (15)

Then applying the inverse matrix g*' we recover the definition of the Christoffel symbols:
1
Al = igkl(aigjl + 0jgi1 — O019ij)-

O

Proof without coordinates. Existence follows from the Levi-Civita connection. For uniqueness, suppose V is a
symmetric and metric-compatible connection and use both properties to write

XY, 2)g =(VxY,Z)g + (Y.VxZ)y =(VxY,Z), + (Y, VX)), + (Y, [X, Z])g. (16)

We will use a similar trick as the proof in coordinates to find an expression for V. By cyclically permuting
the above, we get two more identities:

Y(Z,X)y=(VvZ,X)g +{(Z,VyX)y =(VvZ,X)g +(Z,VxY), +(Z,[Y,X]), (17)
Z(X,Y),=(VzX,Y), +(X,V3Y), =(VzX,Y) + (X, VyZ) ;s + (X, [Z,Y]),. (18)

Now adding the first two equations and subtracting the third gives the cancellation
X<Y7 Z>g + Y<ZaX>g - Z<Xa Y>9 = 2<VXK Z>9 + <Y7 [Xa ZD!] + <Z7 [Y7 X]>!] - <X7 [Zv Y]>£] (19)
Thus we can solve for (VxY, Z), to find
1
<VXYa Z>g = §(X<Y7 Z>g =+ Y<ZaX>g - Z<Xa Y>g - <Y7 [Xa Z])!] - <Z7 [Ya X]>Q + <X7 [Zv Y])Q) (20)

which uniquely determines the connection V. The above is thus a coordinate-invariant expression for the
Levi-Civita connection and is called Koszul’s formula.
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