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Levi-Civita Connection
On a Riemannian manifold, there is a natural choice for which connection to use. Choosing a connection is
choosing a sense of acceleration on our manifold. For a Riemannian manifold M , a natural choice is to agree
that geodesics have 0 accelertaion. Indeed, geodesics are paths that go in a “straight line” without changing
velocity. Thus we would like a connection ∇ such that for any geodesic γ(t) we have ∇γ̇(t)γ̇(t) = 0. If we
have γ(t) = (x1(t), · · · , xn(t)) in local coordinates, this requirement is equivalent to

0 = ∇γ̇(t)γ̇(t) (1)
= ∇γ̇(t)(ẋj(t)∂j) (2)
= γ̇(t)(ẋj(t))∂j + ẋj(t)∇γ̇(t)∂j (3)
= ẍj(t)∂j + ẋj(t)∇ẋi∂i

∂j (4)
= (ẍk(t) + ẋiẋj(t)Ak

ij)∂k. (5)

That is, this is equivalent to
ẍk(t) + ẋiẋj(t)Ak

ij = 0 for all k.

Thus we want to choose our functions Ak
ij so that all geodesics satisfy the above equation. However, comparing

the above equation to the geodesic equation, we realize that this will always be true if we choose Ak
ij = Γk

ij

to be the Christoffel symbols! Therefore, on a Riemannian manifold we should define our connection in
coordinates by setting

∇∂i
∂j = Γk

ij∂k. (C)

This definition, however, opens one important question: does this choice of connection rely on the choice of
coordinates? The answer is no, which we will prove by later defining this natural connection in a coordinate
independent way. The resulting connection is called the “Levi-Civita connection”.

Recall the connection for Euclidean space Rn is given by

∇XY = XY i∂i.

This Euclidean connection satisfies the product rule

∇Z⟨X, Y ⟩ = ∇X

(∑
i

XiY i

)
=
∑

i

(XZi)Y i + Xi(ZY i) = ⟨∇ZX, Y ⟩ + ⟨X, ∇ZY ⟩.

Additionally, observe that for any vector fields X, Y over Rn, we can compute the difference of the Euclidean
connection ∇XY − ∇Y X to be

∇XY − ∇Y X = XY i∂i − Y Xi∂i = (XY i − Y Xi)∂i.

But this is juts the Lie bracket [X, Y ]. That is, the Euclidean connection satisfies the commutator relation

∇XY − ∇Y X = [X, Y ]. (S)
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It turns out that for a Riemannian manifold M , the Levi-Civita connection defined in local coordinates by (C)
also satisfies the commutator relation (S) as well as the following product rule with respect to the metric g.

∇Z⟨X, Y ⟩g = ⟨∇ZX, Y ⟩g + ⟨X, ∇ZY ⟩g. (M)

A connection satisfying (S) is called symmetric and a connection satisfying the product rule (M) is said to be
compatible with the metric. We begin by showing the symmetry which is simply a coordinate computation.

Prop. The Levi-Civita connection as defined in coordinates by (C) is symmetric.

Proof. Compute

∇XY − ∇Y X = ∇Xi∂i
(Y j∂j) − ∇Y j∂j

(Xi∂i) (6)
= Xi((∂iY

j)∂j + Y j∇∂j
∂i) − Y j((∂jXi)∂i + Xi∇∂i

∂j) (7)
= (XY j∂j − Y Xi∂i) + XiY j(∇∂j

∂i − ∇∂i
∂j)∂k (8)

= [X, Y ] + XiY j(Γk
ij − Γk

ji)∂k. (9)

Then the result follows from Γk
ij = Γk

ji which we can see from the definition of Christoffel symbols:

Γk
ij = 1

2gkl(∂igjl + ∂jgli − ∂lgij)

Next we show the Levi-Civita connection as defined in coordinates is compatible with the metric, which
follows from a substantially longer coordinate computation.

Prop. The Levi-Civita connection as defined in coordinates by (C) is compatible with the metric.

Proof. First we expand out the right side of (M).

⟨∇ZX, Y ⟩ + ⟨X, ∇ZY ⟩ = ⟨∇Zk∂k
(Xi∂i), Y j∂j⟩ + ⟨Xi∂i, ∇Zk∂k

(Y j∂j)⟩ (10)
= Zk(Y j⟨∂kXi∂i + Xi∇∂k

∂i, ∂j⟩ + Xi⟨∂i, ∂kY j∂j + Y j∇∂k
∂j⟩) (11)

= Zk(Y j⟨(∂kX l + XiΓl
ik)∂l, ∂j⟩ + Xi⟨∂i, (∂kY l + Y jΓl

kj)∂l⟩) (12)
= ZkY j(∂kX l + XiΓl

ik)glj + ZkXi(∂kY l + Y jΓl
kj)gil (13)

= Zk(Y j∂kX lglj + Xi∂kY lgil) + ZkXiY j(Γl
ikglj + Γl

kjgil). (14)

Next we expand out the left size of (M).

∇Z⟨X, Y ⟩ = Zk∂k⟨Xi∂i, Y j∂j⟩ = Zk∂k(XiY jgij) = Zk(Y j∂kXigij + Xi∂kY jgij) + ZkXiY j∂kgij .

Note these expansions are quite similar, and we see that in fact the right and left sides of (M) are equal so
long as we can show

∂kgij = Γl
ikglj + Γl

kjgil.

Indeed, to show this we use the definition of the Christoffel symbols

Γk
ij = 1

2gkl(∂igjl + ∂jgli − ∂lgij)

and apply the matrix gkm to both sides to conclude

Γk
ijgkm = 1

2(∂igjm + ∂jgmi − ∂mgij).

Thus using the above expression twice we can compute

Γl
ikglj + Γl

kjgil = 1
2(∂igkj + ∂kgji − ∂jgik) + 1

2(∂kgji + ∂jgik − ∂igkj) = ∂kgij
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as needed.

It turns out that these two properties – symmetry and metric compatibility – are quite special. In fact, on a
Riemannian manifold there will only be one connection that satisfies both properties.

Prop. (Fundamental Theorem of Riemannian Geometry). For any Riemannian manifold M , there
exists a unique connection ∇ that is both symmetric and compatible with the metric. This connection is
called the Levi-Civita connection.

Proof in coordinates. We have already demonstrated existence, for the Levi-Civita connection is symmetric
and metric-compatible. To see why an arbitrary symmetric and metric-compatible connection ∇ must be the
Levi-Civita connection, we work locally in coordinates (xi) and write ∇∂i

∂j = Ak
ij . By the same computation

we performed to show symmetry of the Levi-Civita connection, we see the symmetry of ∇ is equivalent to
Ak

ij = Ak
ji. Similarly, we see ∇ is compatible with the metric exactly when

∂kgij = Al
ikglj + Al

kjgil.

by the corresponding computation for the Levi-Civita connection; this expression is often called the first
Christoffel identity. These two requirements give a linear system of 1

2 n2(n+1) equations with the same amount
of unknowns. The trick to solve this system is to permute the first Christoffel identity to get cancellation and
solve for the sum

∂igjl + ∂jgil − ∂lgij = (Ap
ijgpl + Ap

ilgjp) + (Ap
jigpl + Ap

jlgip) − (Ap
ligpj + Ap

ljgip) = 2Ap
ijgpl. (15)

Then applying the inverse matrix gkl we recover the definition of the Christoffel symbols:

Ak
ij = 1

2gkl(∂igjl + ∂jgil − ∂lgij).

Proof without coordinates. Existence follows from the Levi-Civita connection. For uniqueness, suppose ∇ is a
symmetric and metric-compatible connection and use both properties to write

X⟨Y, Z⟩g = ⟨∇XY, Z⟩g + ⟨Y, ∇XZ⟩g = ⟨∇XY, Z⟩g + ⟨Y, ∇ZX⟩g + ⟨Y, [X, Z]⟩g. (16)

We will use a similar trick as the proof in coordinates to find an expression for ∇. By cyclically permuting
the above, we get two more identities:

Y ⟨Z, X⟩g = ⟨∇Y Z, X⟩g + ⟨Z, ∇Y X⟩g = ⟨∇Y Z, X⟩g + ⟨Z, ∇XY ⟩g + ⟨Z, [Y, X]⟩g (17)
Z⟨X, Y ⟩g = ⟨∇ZX, Y ⟩g + ⟨X, ∇ZY ⟩g = ⟨∇ZX, Y ⟩g + ⟨X, ∇Y Z⟩g + ⟨X, [Z, Y ]⟩g. (18)

Now adding the first two equations and subtracting the third gives the cancellation

X⟨Y, Z⟩g + Y ⟨Z, X⟩g − Z⟨X, Y ⟩g = 2⟨∇XY, Z⟩g + ⟨Y, [X, Z]⟩g + ⟨Z, [Y, X]⟩g − ⟨X, [Z, Y ]⟩g. (19)

Thus we can solve for ⟨∇XY, Z⟩g to find

⟨∇XY, Z⟩g = 1
2(X⟨Y, Z⟩g + Y ⟨Z, X⟩g − Z⟨X, Y ⟩g − ⟨Y, [X, Z]⟩g − ⟨Z, [Y, X]⟩g + ⟨X, [Z, Y ]⟩g). (20)

which uniquely determines the connection ∇. The above is thus a coordinate-invariant expression for the
Levi-Civita connection and is called Koszul’s formula.
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