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Bessel Potential
Consider the PDE

(1 − ∆)u = f in Rn.

We can take the Fourier transform of both sides and solve for the Fourier transform û(ξ) of the solution.

(1 + |ξ|2)û(ξ) = f̂(ξ) =⇒ û(ξ) = 1
1 + |ξ|2

f̂(ξ).

Taking the inverse Fourier transform F−1 of the solution allows us to solve for the solution

u(x) = F−1
(

1
1 + |ξ|2

f̂(ξ)
)

.

In other words, this PDE can be solved with the Bessel Potential operator

Bf := F−1
(

1
1 + |ξ|2

f̂(ξ)
)

,

which inverts the differential operator (1 − ∆). Such “pseudodifferential operators” appear frequently when
trying to invert differential operators.

Definition of Pseudodifferential Operators
Consider some order m differential operator P (x, D) =

∑
|α|≤m aα(x)Dα on Rn with aα(x) smooth and all

derivatives ∂βaα(x) bounded. Use that the Fourier transform intertwines differentiation and multiplication
to compute

P (x, D)u = P (x, D)F−1(û(ξ)) =
∑

|α|≤m

aα(x)DαF−1(û(ξ)) (1)

= F−1

 ∑
|α|≤m

aα(x)ξαû(ξ)

 = F−1 (p(x, ξ)û(ξ)) (2)

where the polynomial p(x, ξ) :=
∑

|α|≤m aα(x)ξα is the (full) symbol. The above gives

P (x, D)u = F−1 (p(x, ξ)û(ξ)) .

That is, applying a differential operator to a function is equivalent to multiplying it’s Fourier transform by the
symbol. In other words, the Fourier transorm intertwines the differential operator and this principle symbol:

P (x, D)F−1 = F−1p(x, ξ) or F ◦ P (x, D) = p(x, ξ)F .

We saw above that the differential operator (1 − ∆) has symbol 1 + |ξ|2. The idea of pseudodifferential
operators is to consider operators with non-polynomial symbols p(x, ξ). For example, we defined the Bessel
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potential operator above to have “symbol” (1 + |ξ|2)−1. We ask the question then: what symbols can we use
to define a nice operator?

Because we are working with Fourier transforms, one particularly important property of our differential
operator P (x, D) is the mapping property P (x, D) : S (Rn) → S (Rn) where S (Rn) is Schwartz space. This
mapping property is due to two properties of the symbol p(x, ξ).

Firstly, the symbol p(x, ξ) =
∑

aα(x)ξα is smooth. This allows us to write the derivatives

∂γ
x(P (x, D)u) = ∂γ

xF−1(p(x, ξ))û(ξ) =
∫
Rn

∂γ
x(eix·ξp(x, ξ))û(ξ)dξ

in terms of the derivatives ∂γ
x(eix·ξp(x, ξ)), which after expanding by product rule relies on the derivatives

∂α
x px(x, ξ) of the symbol.

Secondly, the above integrals are well-defined because for differential operators with symbol p(x, ξ), if
û(ξ) ∈ S (Rn), then ∂αp(x, ξ)û(ξ) ∈ S (Rn). To see this, compute the bound

|∂β
ξ ∂α

x p(x, ξ)| =

∣∣∣∣∣∣∂β
ξ ∂α

x

∑
|µ|≤m

aµ(x)ξµ

∣∣∣∣∣∣ (3)

≤
∑

|µ|≤m

|∂α
x aµ(x)|µ!

β! |ξ|µ−β ≤ C
∑

|µ|≤m

|ξ|µ−β ≤ Cα,β⟨ξ⟩m−|β|. (4)

where ⟨ξ⟩2 = (1 + |ξ|2) is the bracket notation and we used that ∂α
x aµ are bounded. Thus two key

properties of the symbol p(x, ξ) of a differential operator are smoothness, and that we have the bound
|∂β

ξ ∂α
x p(x, ξ)| ≤ Cα,β⟨ξ⟩m−|β|. We then consider a more general set of symbols p(x, ξ) that satisfy precisely

these two properties as well as the corresponding class of operators.

Def (Symbol class Sm.) Given some m ∈ Z, define the symbol class Sm of order m to be all p ∈ C∞(Rn
x ×Rn

ξ )
so that for all α, β there exists Cα,β > 0 so that

|∂β
ξ ∂α

x p(x, ξ)| ≤ Cα,β⟨ξ⟩m−|β|.

Def (Pseudodifferential operator). For some p ∈ Sm, we define its quantization P = Op(p) to be the
operator

Pf(x) := (2π)−1
∫
Rn

eix·ξp(x, ξ)f̂(ξ)dξ.

This operator P is called a pseudodifferential operator of order m and the set of all pseudodifferential operators
of order m is denoted Ψm = {Op(p) : p ∈ Sm}.

Later we may consider an alternate bound on the derivatives of the symbols, but the symbol class as defined
above is the most common and most closely resembles the bound on differential operators, which results in
nice Sobolev mapping properties. Note that the definitions above immediately generalize to m ∈ R.
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