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Introduction

This expository document aims to make the basics of topological K-theory accessible to undergrad-
uate students. The document assumes the reader has had first classes in linear algebra and discrete
mathematics, knows the basics of group theory and ring theory, and is comfortable reading formal
proofs. The material on K-theory is centered around Allen Hatcher’s Book “K-theory and Vector
Bundles” [4].

K-theory considers objects called vector bundles, which are created by placing a vector space at
every point of a topological object while adhering to some technical rules. For instance, place the
vector space R on every point on the circle so that each copy of R points in the same direction
— this forms a cylinder. Now place the copies of R onto the circle while slowly changing the
orientation such that after rounding the circle, the vector spaces have made a half twist — this
forms a Mobius Band. K-theory fixes a topological space and considers all possible vector bundles
over that topological space. This collection of vector bundles over the circle would include the
cylinder and the Mobius band. The objective of K-theory is to craft this collection of all possible
vector bundles into a ring so that two vector bundles can be added or multiplied together. This
process would associates a ring with the original fixed topological space. However, there is some
work to do before getting to this point.

Chapter 1 introduces the basics of category theory, explaining that rings, topological spaces, and
vector spaces are all categories, and pointing out that a more precise formulation of “associating

Figure 1. Cylinder and Mobius Band are Vector Bundles over the Circle
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6 INTRODUCTION

a ring with a topological space” is through the use of functors — a mapping from one category to
another. All later chapters will practice the language of category theory.

Chapter 2 introduces the algebra necessary for later chapters, beginning by anticipating a future
issue; the formulation of K-theory will get stuck stuck with a ring without additive inverses such
as the nonnegative integers N∪{0}. However, just as the nonnegative integers naturally rest inside
the complete ring of integers, these broken rings with particular properties can be extended into
complete rings. This chapter also introduces the direct sum and tensor product through their
universal properties, which are the key to defining the addition and multiplication operations on
vector bundles.

Chapter 3 is a primarily self contained chapter on all of the topology that will be necessary later on.
This includes basic definitions, relevant examples, and some particular operations on topological
objects.

Chapter 4 gives a formal introduction to vector bundles, working towards the definition of addition
and multiplication between vector bundles by extending the direct sum and tensor product opera-
tions from vector spaces to vector bundles. This chapter additionally introduces pullback bundles
and some miscellaneous results on vector bundles required later.

In Chapter 5, it becomes clear that only compact Hausdorff spaces will guarantee the pleasant ring
properties and individual vector bundles cannot form a ring; rather, the elements of the ring must
be equivalence classes. The choice of equivalence class gives rise to either K-theory and reduced
K-theory, which are both formally defined in this chapter. This completes the goal of associating a
ring to a topological object.

Chapter 6 searches for extra structure on these induced K-theory rings. K-theory has particularly
nice properties over spheres such as the Bott periodicity theorem. This allows for a space-subspace
pair to generate an infinite sequence of groups that satisfies all the properties of a cohomology
theory. An external product is then defined on K-theory and reduced K-theory, which gives useful
information about the induced K-theory rings.

Chapter 7 focuses on an application of K-theory — that there are only finite real division algebras.
The existence of a division algebra in Rn can be reduced to a problem about spheres, which K-
theory is well equipped to study. The information given by the external product is enough to rule
out the existence of odd dimensional division algebras and the idea of the even dimensional case is
discussed.



CHAPTER 1

Category Theory

1. Categories and Functors

Begin by considering the following familiar mathematical subjects that do appear to have any
connection with one another. The study of linear algebra focuses on two things: vector spaces
and linear transformations between vector spaces. Set theory examines sets as well as mappings
between sets. Group theory considers groups and homomorphisms between groups whereas ring
theory focuses on rings and homorphisms between rings. Real analysis studies metric spaces together
with continuous functions between metric spaces as well as manifolds paired with smooth mappings
between these manifolds. A pattern emerges; each one of these topics have two things — some
objects of study (vector spaces, metric spaces, manifolds, sets, groups, rings) together with some type
of morphism between the objects of study (linear transformations, continuous functions, smooth
mappings, set mappings, homomorphisms). Any such object-morphism pair is called a category so
long as it obeys some rules.

Definition 1.1 (Category). Let O denote a collection of objects and let M denote a collection of
morphisms. Then, the pair (O,M) is called a category if:

(i) There is an identity element Id in the morphismsM that satisfies: Id(obj) = obj for all objects
obj in the objects O and the composition law f ◦ Id = f = Id ◦f holds for all f in M.

(ii) For a specific object obj, the collection of morphisms from obj to itself must contain the
identity

(iii) composition is associative: for all f, g, h ∈M, (f ◦ g) ◦ h = f ◦ (g ◦ h).

The formal definition of a category aims to take all the specific object-morphisms pairs mentioned
earlier and identify the key commonalities between them. To get a feel for this formal notion of
category, examine the following two categories.

Example 1.2 (Vector Spaces as a Category). The category of vector spaces takes the collection of
all vector spaces as objects and all linear maps between vector spaces as morphisms.

(i) The collection of all linear maps indeed includes the identity mapping. Here, the 1 × 1
identity matrix, the 2 × 2 identity matrix, the 3 × 3 identity matrix, and all of the others
are representations of the same identity morphism. Indeed for any other linear map L, the
composition requirement Id ◦L = L = L ◦ Id holds.

(ii) The collection of all linear maps from a particular vector space V to itself indeed includes the
identity. In this case, fixing a basis for an n dimensional vector space allows the n×n identity
matrix to represent this identity map.

(iii) The composition of linear maps, by the nature of functions, is associative.

7



8 1. CATEGORY THEORY

Example 1.3 (Rings as a Category). The category of rings takes the collection of all rings as
objects and the collection of all rings homomorphisms between rings as morphisms.

(i) The collection of all ring homomorphisms indeed includes the identity, which indeed satisfies
the composition requirement ϕ ◦ Id = ϕ.

(ii) Additionally, the set of all ring homomorphisms from a particular ring R to itself includes the
identity mapping. Taking the elements of R to themselves is a valid ring homomorphism from
R to R.

(iii) Finally, the composition of ring homomorphisms, by the nature of functions, is associative.

So the rules posed in the definition of category seem to work out for specific examples. Pinning down
the similarities between different categories allows for creating relationships between categories. A
functor is a way to map one category into another.

Definition 1.4 (Functor). Consider two categories CA = (OA,MA) and CB = (OB ,MB). Next
consider the mapping F : CA → CB , which maps OA to OB and MA to MB . Then, F is called a
functor if F preserves identity identity: F(IdA) = IdB as well as satisfies either one of the following
two composition requirements:

• For, f, g ∈MA, then F(g ◦ f) = F(g) ◦ F(f). Here, F is called a covariant functor.
• For, f, g ∈MA, then F(g ◦ f) = F(f) ◦ F(g). Here, F is called a contravariant functor.

A simple example of a functor is included below.

Example 1.5. Groups also form a category by taking morphisms to be the usual homomorphisms
of groups: a function that preserves the operation. Then, a functor F from the category of rings to
the category of groups can be defined as follows. For any ring (R,+, ·), let F((R,+, ·)) be the group
(R,+). Additionally, let the functor F take a ring homomorphism ϕ to the same mapping ϕ, but
now viewed as a group homomorphism. With this definition, the identity will surely be mapped to
the identity under the functor, and the covariant composition rule will apply.

This functor is quite boring, for it simply “forgets” the ring structure. But do not worry — the
next five chapters are dedicated to constructing a much more interesting functor. K-theory is a
contravariant functor from the category of topological spaces to the category of rings.

The difference between covariant and contravariant functors becomes more clear when examining
commutative diagrams as depicted in the included figures. Figure 1 shows the arrows pointing in
the same direction and corresponds to a covariant functor. Figure 2, however, reverses the direction
of the arrow with the application of the functor and represents a contravariant functor. Both of
these diagrams represents a functor between two categories, say from category A to category B.
In the diagrams, X and Y represent two objects in category A and f represents a morphism from
object X to object Y . Then F denotes a functor from category A to category B and so F(X) and
F(Y ) are objects in categories B; more specifically, F(X) is where the functor maps object X to
and F(Y ) is where the functor maps object Y to. The functor takes f to F(f), which represents
a morphism between F(X) and F(Y ), but keep in mind the direction of this mapping depends on
the type of functor.

So, the direction of the arrows is preserved for covariant functors and reversed for contravariant
functors. But how does this but how does this relate to the composition requirements as given
in definition 1.4? Applying the functor on an additional object Z together with an additional
morphism f as in Figures 3 and 4 gives a visual of the composition requirements. For covariant
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X Y

F(X) F(Y )

f

F F
F(f)

Figure 1. Covariant Functor

X Y

F(X) F(Y )

f

F F
F(f)

Figure 2. Contravariant Functor

Y

X Z

F(Y )

F(X) F(Z)

g

F
g◦f

f

F F
F(g)

F(g◦f)

F(f)

Figure 3. Covariant Functor Composition

functors as in figure 3, the natural composition requirement is not surprising, F(g◦f) = F(g)◦F(f).
However, in the case of contravariant functors as depicted in Figure 4, the statement F(g) ◦ F(f)
does not make sense. It is impossible to apply F(f) and then immediately F(g) because the input
space of F(g) is different than the output space of F(f). The relevant composition requirement
then must be F(g ◦ f) = F(f) ◦ F(g).
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Y

X Z

F(Y )

F(X) F(Z)

g

F
g◦f

f

F F
F(g)

F(g◦f)

F(f)

Figure 4. Contravariant Functor Composition

The word isomorphism is used when working in rings, groups, manifolds, vector spaces, and various
other settings. So perhaps it does not come as a surprise that category theory also provides general
definition of isomorphism that carries over to all of these different categories.

Definition 1.6 (Isomorphism). Given a category (O,M) and two objects X and Y , then a mor-
phism ϕ : X → Y is an isomorphism if there exists a morphism ψ : Y → X such that ϕ ◦ ψ = Id
and ψ ◦ ϕ = Id.

The above definition states an isomorphism is a morphism that has a morphism as an inverse. For
example, a linear map is an isomorphism if it has a linear inverse and a ring homomorphism is an
isomorphism if its inverse is a ring homomorphism. However, in linear algebra, the definition of an
isomorphism is often given as a bijective linear map. Similarly, in ring theory, an isomorphism is
often defined as a bijective ring homomorphism. These definitions do not address the morphism
properties of the inverse. However, in these specific cases, one can verify that the inverse of a
bijective linear map L is always linear. For instance, the scalar verification would go as follows.

L−1(αx) = L−1(αL(x′)) = L−1(L(αx′)) = αx′ = αL−1(x)

Where the first step x = L(x′) for some x′ uses surjectivity of L and the last step x′ = L−1(x) uses
the injectivity of L. A similar argument gives the additive property of linear transformations and
the ring homomorphism properties. This demonstrates that the familiar definitions of isomorphism
are equivalent to this abstract version. However, it is not always true that a bijective morphism will
have a morphism as an inverse. In particular, a continuous bijection need not have a continuous
inverse.
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2. Further Examples

This section will examples of two more categories along with a functor between these two categories.
The category of real division algebras considers the following objects.

Definition 1.7 (Division Algebra). A real division algebra considers a set Rn for some n together
with operations (+, ·) such that (Rn,+) forms an abelian group, there is a multiplicative identity,
and every element has a two-sided multiplicative inverse.

Note that division algebras do not require commutativity or associativity the multiplication opera-
tion, which is what distinguishes the definition of division algebras from that of fields. Every field
is then a division algebra, including the fields R and C. However, there are examples of division
algebras that are not fields.

Such an example of a non-commutative division algebra the quaternions, which considers the set
R4 and denotes each element (a, b, c, d) ∈ R4 by a+ bi+ cj + dk. Applying the relations

i2 = j2 = k2 = ijk = −1

makes the set {±1,±i,±j,±k} a (noncommutative) group under multiplication. With this, multi-
plication of two elements of R4 is given by expanding the expression

(a1 + b1i+ c1j + d1k)(a2 + b2i+ c2j + d2k)

with the distribution law, and simplifying using the operations of the group {±1,±i,±j,±k}. With
this construction, every element indeed has a multiplicative inverse. Specifically,

(a+ bi+ cj + dk)−1 =
a− bi− cj − dk
a2 + b2 + c2 + d2

Thus R4 can be equipped with this division algebra structure. The Cayley octonions are an example
of a non-associative division algebra structure on the set R8. Considering the division algebras over
the objects

Example 1.8 (Division Algebras as a Category). Real division algebras indeed form a category.
A morphism between two division algebra objects is defined to be any function that preserves the
additive operation, the multiplicative operation, and the identity element. And so, as in the case
of rings, the identity operation is indeed a morphism that is included in all morphisms from a real
division algebra to itself. Associativity follows from the nature of functions.

The category of H-spaces on spheres will consider the following objects.

Definition 1.9 (Sphere as an H-Space). Let the sphere Sn−1 denote the subset of Rn that is dis-
tance 1 from the origin. Then, Sn−1 is an H-space if it is equipped with a continuous multiplication
map µ : Sn−1 × Sn−1 → Sn−1 that has a two sided identity element e.

An H-space is given by taking S1 as the subset of complex numbers with norm 1. This equips S1

with a continuous multiplication map given by multiplication of complex numbers. This map is
closed in S1 because the product of two complex numbers with norm 1 will have norm 1 and thus
this gives an H-space.

Example 1.10 (H-Spaces on Spheres as a Category). A morphism between H-spaces is a continu-
ous map that preserves the H-space multiplication operation and the identity element. Again, the
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identity map satisfies these conditions and is a valid morphism from an H-space to itself. Associa-
tivity follows from the nature of functions.

The complex numbers were used earlier to assign an H-space structure to S1. This is representative
of a larger functor from the category of real division algebras to the category of H-spaces over
spheres.

Example 1.11. Take a real division algebra over Rn. Next take the sphere Sn−1 and consider
the sphere as the subset of Rn with all points a distance of 1 from the origin. The product of two
elements of a division algebra with distance 1 from the origin will return an element of distance
1 from the origin, and thus this induces a closed map µ : Sn−1 × Sn−1 → Sn−1 that satisfies the
necessary properties of an H-space multiplication by the given properties of the division algebra
multiplication. Further, the identity element in the division algebra must be of distance 1 from
the origin and thus will be contained in the H-space. Because the H-space multiplication is only a
restriction of the the division algebra multiplication to a smaller area, the identity homomorphism
of division algebras induces the identity homomorphism for H-spaces and morphisms obey the
covariant commutativity law.

Category theory is, by design, abstract. Comfort with speaking in the language of category theory
comes with practice and the following chapters will aid in practicing this language.



CHAPTER 2

Algebra

1. Ring Completion

An example of a category that the reader is likely unfamiliar with is the category of semirings. The
objects in these categories are called semirings, which are simply rings without necessarily having
an additive inverse.

Definition 2.1 (Semiring). A semiring is a set S paired with the binary operations (+, ·) such
that the following properties hold:

(i) The operation + is associative and commutative
(ii) The operation · is associative

(iii) The operation · distributes over +
(iv) S has both an additive and multiplicative identity.

A simple example of a semiring is the set of nonnegative integers under the usual addition and
multiplication operations. The element 0 is the additive identity and 1 is the multiplicative identity.
In fact, this example of N∪{0} has two additional nice properties: commutativity of multiplication
and the cancellation property under addition. To be precise, the cancellation property promises
that given elements a, b, and s in a semiring, the statement a+s = b+s implies a = b. This section
will focus on commutative semirings with the additive cancellation property.

To complete the category of semirings, the morphisms of a category must be discussed. In this
case, the morphisms are referred to as homomorphisms of semirings which are defined as follows.

Definition 2.2 (Homomorphism of Semirings). Take monoids S and R and consider a mapping
ϕ : S → R. Then, ϕ is a homomorphism of semirings if:

(i) ϕ(a+ b) = ϕ(a) + ϕ(b) for all a, b ∈ S.
(ii) ϕ(a · b) = ϕ(a) · ϕ(b)

(iii) ϕ(1) = 1

Note homomorphisms between semirings follows the same structure as homomorphism between
rings; in fact, a homomorphism of rings is a homomorphism of semiring, for rings are themselves
semirings. In fact, even a mapping from a semiring S to a ring R could be considered a homo-
morphism of semirings if the mapping satisfies the necessary properties. Overall, the category of
semirings is frustratingly close to the category of rings. Luckily, there is a functor from the category
of commutative semirings with cancellation to the category of rings called ring extension — a way
to expand the structure of a monoid into a fully fledged ring. K-theory heavily relies on this functor,
so pay particular attention to it.

13



14 2. ALGEBRA

The formal definition of ring extension is addressed shortly, but first consider the following example.
The semiring of nonnegative integers predictably extends into the ring of all integers. The idea of
ring extension is that the semiring N ∪ {0} naturally belongs inside the larger ring Z. This idea
of “belonging inside” a particular ring is formally given by universal property in the following
definition.

Definition 2.3 (Ring Completion). Take commutative semiring S with additive cancellation.
Then, a ring completion of of S is a commutative ring R together with an injective homomorphism
i : S → R that satisfies the following property: for any commutative ring R′ and corresponding
homomorphism of semirings ϕ : S → R′, there exists a unique homomorphism of rings ψ : R→ R′

such that the following diagram commutes:

S R′

R

i

ϕ

ψ

∃!

Figure 1. The Universal Property

That is, ψ ◦ i = ϕ.

There is still work to be done with this definition; it must still be verified that the above construction
exists and is unique. The requirement that the above triangle commutes is the universal property,
and throughout this chapter there will be many constructions using the universal property structure.

To get a better feel for this definition, observe that the extension of the nonnegative integers into
the integers fulfills this universal property. In this case, the extension function i : N ∪ {0} → Z
is given by the injective identity function i(n) = n. Now let R′ be an arbitrary ring and let
ϕ : N ∪ {0} → R′ be an arbitrary semiring homomorphism. Now note that for ψ(i(1)) = ϕ(1) by
definition, so ψ(1) = ϕ(1). Because {1} generates the integers, this defines a unique homomorphism
ϕ. In particular, for any difference of nonnegative integers m − n, the homomorphism ψ can be
written ψ(n−m) = ϕ(n)−ϕ(m), which satisfies the universal property and thus gives the existence
of the homomorphism. In fact, knowing that Z fulfills the universal property is enough to give
that Z is the ring completion of the nonnegative integers, for the nature of the universal property
condition forces the ring extension to be unique as demonstrated in the following proof.

Proof of Uniqueness of Definition 2.3. Consider two ring completions (R, i) and (R′, i′)
of a semiring S. It must be shown that R and R′ are isomorphic. By (R, i) a ring completion and
taking (R′, i′) to be a ring-homomorphism pair, the universal property in the definition of ring
completion promises the existence of a unique homomorphism ψ1 : R → R′ such that ψ1 ◦ i = i′.
Similarly, by swapping the roles of (R, i) and (R′, i′), there exists a a unique homomorphism ψ2 :
R′ → R such that ψ2 ◦ i′ = i. But then, the composition ψ2 ◦ ψ1 : R→ R satisfies (ψ2 ◦ ψ1) ◦ i = i.
Thus ψ2 ◦ψ1 must be the unique map promised by the universal property by applying the universal
property of ring completion (R, i) on (R, i) itself. However, the identity mapping also satisfies the
condition Id ◦i = i and so the uniqueness conditions gives that ψ2 ◦ ψ1 = Id. See Figure 2 for a
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visual of this argument. The same argument gives that ψ1◦ψ2 = Id and thus ψ1 and ψ2 are inverses
of one another. This gives that ψ1 and ψ2 are isomorphisms and so R ∼= R′.

R R

S

R′

ψ1

Id

i′

ii

ψ2

Figure 2. Uniqueness of Ring Completion Argument

�

The above argument never appeals to the specific properties of rings and semirings; in fact, this
argument applies to all definitions defined through the universal property. For every additional
formulation using the universal property, uniqueness will follow automatically.

All that needs to be shown to justify a definition using the universal property is existence. The
existence proof is given at the end of this chapter, but note the following important lessons from
the proof. The existence proof is related to the fact that each element in Z can be represented by
a difference of nonnegative integers a− b. In a semiring, there is no promise of subtraction, but a
pair (a, b) can secretly represent the difference a − b ∈ Z through an equivalence relation. For an
arbitrary semiring S, the proof uses the equivalence relation ∼ on S×S given by (a1, b1) ∼ (a2, b2)
if a1 + b2 = a2 + b1. Again, think of this equivalence relation as “sneaky subtraction”, stemming
from the wish to express a1−b1 = a2−b2 without the explicit use of subtraction. There is a natural
addition on the equivalence classes that gives a commutative group structure. However, in order to
get a well-defined multiplication, the semiring must have the additive cancellation property.

Rings are nicer than semirings; they have additive inverses and extensive theory. As shown above,
every commutative semiring with cancellation extends to a unique ring; therefore, given a semiring
with these properties, it is best to ditch the semiring and instead talk about the ring extension. This
idea of extending an “incomplete” object into a nicer object is the whole point of constructions using
the universal property. The next section contains two more instances of extending an incomplete
object into a nicer object.
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2. Packing Together Modules

This section introduces the direct sum and the tensor product operations. Similar to how a ring
is preferred to a semiring, one single vector space is preferred to a pair of vector spaces V1, and
V2. The direct sum V1 ⊕ V2 provides the natural vector space that V1 and V2 sit inside. Similarly,
the tensor product returns the natural vector space V1 ⊗ V2 that the Cartesian product V1 × V2
sits inside. The direct sum and tensor product can be applied to a variety of categories — abelian
groups, commutative rings, and even vector bundles as addressed in the next chapter. To define
the direct sum for these categories, this section considers a more general category, the category of
modules. In defining the direct sum and tensor product operation through modules, the definitions
for other categories will follow quickly.

Definition 2.4 (Module). Let M be a set and let R be a commutative ring with identity. Further,
take an additive operation + : M ×M →M and a scalar multiplication from R×M to M . Then,
M is a module over R if:

(i) M with + forms an abelian group.
(ii) (r + s)m = rm+ sm for all r, s ∈ R and m ∈M
(iii) r(m+ n) = rm+ rn for all r ∈ R and m,n ∈M
(iv) (rs)m = r(sm) for all r, s ∈ R and m ∈M
(v) 1 ·m = m for all m ∈M

Note that the properties of a module are exactly those properties of a vector space. The only
difference between modules and vector spaces is that a vector space is over a field whereas a module
can be over a ring. Modules then, are a generalization of vector spaces.

Additionally, consider any module over the ring Z where scalar multiplication Z × M → M is
defined by (n,m) 7→ m+m+ · · ·+m where the addition is performed n times. This indeed satisfies
the properties of a module, but this definition makes the structure given by scalar multiplication
redundant — it is only a shorthand for repeated addition. Then, this module is simply an abelian
group. In fact, Z modules and abelian groups are exactly equivalent. Commutative rings are not
modules, but giving a Z module M an appropriate multiplication operation M×M →M could then
make a module into a commutative ring. Overall, vector spaces, abelian groups, and commutative
rings are modules with extra specifications.

Modules are a category. Keeping in mind that modules are generalizations of vector spaces, the
natural homomorphism to associate with with modules is a linear map.

Definition 2.5 (Module Homomorphism). Let R be a commutative ring and let M and N be
R-modules. Then, a homomorphism of modules is a mapping ϕ : M → N such that

(i) ϕ(m1 +m2) = ϕ(m1) + ϕ(m2) for all m1,m2 ∈M .
(ii) ϕ(rm) = rϕ(m) for all r ∈ R and m ∈M .

With the definition of the module category, note that the direct sum of two modules M1 and M2 is
the natural single module that both M1 and M2 sit inside. This condition is precisely formulated
with the universal property of direct sum as in the following definition.

Definition 2.6 (Direct Sum). Take commutative ring R with identity and consider two R-modules
M1 and M2. Then the direct sum of the modules, denoted M1 ⊕M2, is the unique R-module and
injective inclusion maps i1 : M1 → M1 ⊕M2 and i2 : M2 → M1 ⊕M2 such that the universal
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property is satisfied. That is, for any R-module N with the pair of homomorphisms ϕ1 : M1 → N
and ϕ2 : M2 → N , there exists a unique homomorphism of R-modules ψ : M1⊕M2 → N such that
the following diagram commutes. In words, this is the requirement that ϕ1 = ψ ◦ i1 and ϕ2 = ψ ◦ i2.

M1,M2 N

M1 ⊕M2

i1,i2

ϕ1,ϕ2

ψ

∃!

Figure 3. Universal Property of Direct Sum

Uniqueness of the direct sum follows directly from the universal property as mentioned in the ring
completion section. However, existence must be shown by an explicit construction. In the finite case
M1⊕M2, the construction is simply the set M1×M2 where the operations are defined coordinate-
wise. This construction together with the inclusion maps i1 : m1 7→ (m1, 0) and i2 : m2 7→ (0,m2)
for m1 ∈ M1, m2 ∈ M2 satisfies the universal property and thus gives the direct sum. For infinite
direct sums, however, a valid construction can only allow a finite number of coordinates to be
nonzero, which is the key distinction between direct sum and Cartesian product.

Recall the categories of vector spaces, abelian groups, and commutative rings are all modules with
additional structure. Thus this definition of direct sum between modules defines the direct sum
on each of these categories. However, borrowing thus module operation only promises that the
resulting direct sum will be a module — not a vector space, abelian group, or commutative ring.
It must be shown that the additional structure for each category is preserved in some way.

The verification for vector spaces, for example, is brief but should be emphasized. Take two vector
spaces with field F ; these two vector spaces are F -modules, thus the direct sum gives an F -module,
which is in turn a vector space. Similarly, two abelian groups are Z modules, and so the direct sum
is a Z-module which is in turn an abelian group.

However, showing that the direct sum of commutative rings results in a commutative ring takes
more work to verify, for there is no predefined multiplication mapping on the direct sum. To define
this multiplication map, note the convention of denoting i1(m1)+i2(m2) for m1 ∈M1 and m2 ∈M2

by m1 ⊕m2. Now, consider rings R and S and let the multiplication map in the direct sum R⊕ S
be defined by (r1 ⊕ s1) · (r2 ⊕ s2) = (r1s1 ⊕ r2s2). This indeed defines a well-defined multiplication
map in the direct sum that satisfies necessary properties to make R⊕ S into a commutative rings.
However, there is no natural choice for the identity in R ⊕ S that will agree with the inclusion
maps, so the direct sum of commutative rings will be a commutative ring, but not necessarily with
identity.

Example 2.7. This example claims that the direct sum of vector spaces Rn and Rm is isomorphic
to Rn+m with some natural inclusion maps. Take the inclusion maps to be given by i1 : Rn → Rn+m
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and i2 : Rm → Rn+m defined by

i1 : (v1, v2, . . . , vn) 7→ (v1, v2, . . . , vn, 0, 0, . . . , 0)

i2 : (w1, w2, . . . , wm) 7→ (0, 0, . . . , 0, w1, w2, . . . , wm)

By the uniqueness of direct sum, it must only be verified that Rn+m satisfies the defining universal
property of direct sum. So take V to be any vector space and take linear maps ϕ1 : Rn → V and
ϕ2 : Rm → V . Now consider the linear map ψ : Rn+m → V given by

ψ : (v1, v2, . . . , vn, w1, w2, . . . , wm) 7→ ϕ1(v1, v2, . . . , vn) + ϕ2(w1, w2, . . . , wm)

This indeed satisfies the necessary properties ϕ1 = ψ ◦ i1 and ϕ2 = ψ ◦ i2. And the linearity of ψ
follows from that of ϕ1 and ϕ2. This gives existence and for uniqueness note that the restrictions
upon ψ force it to agree with the defined ψ on the basis vectors. Because a linear map defined
on the basis vectors extends to a unique map, only the defined map ψ can work, completing the
verification. In the same way it follows that Cn ⊕ Cm ∼= Cn+m.

The direct sum can be extended to more than two modules by initially considering a collection
of more than two modules and corresponding maps in the universal property. In fact, consider a
collection Mλ where λ is indexed by some index set I. Then using a collection of homomorphisms ϕλ
in the universal property indexed by the same set I gives the direct sum

⊕
λ∈IMλ of an arbitrarily

large set.

Now note some properties of direct sum. Firstly, the direct sum is associative, for both the sum
M1 ⊕ (M2 ⊕M3) and the sum (M1 ⊕M2) ⊕M3 are defined to be the direct sum M1 ⊕M2 ⊕M3

as defined in the previous paragraph. Next note that commutativity only depends on if the initial
pair of modules is denoted M1, M2 or M2, M1. This is just a notational question and so there is
an isomorphism between M1 ⊕M2 and M2 ⊕M1, giving commutativity.

Additionally, the direct sum operation has an identity — the module {0}. The set containing 0 is
also a vector space, an abelian group, and a commutative ring, so this acts an an identity operation
for every category of interest. The verification that {0} is the additive identity follows by the same
process as example 2.7. It must only be shown that M together with inclusion maps fulfills the
defining universal property of M ⊕ {0} and thus must be isomorphic by the uniqueness of direct
sum.

Similar to the direct sum is the tensor product, which takes the Cartesian product of two modules
and returns the module that the Cartesian product sits within. The following definition refers to
bilinear maps, which is simply a map ω : M1 ×M2 → N such that for each m1 ∈ M1 the maps
ω1 : x 7→ ω(x,m2) is and ω2 : x 7→ ω(m1, x) are both linear.

Definition 2.8 (Tensor Product). Take commutative ring R with identity and take M1 and M2 to
be R-modules. Then, the tensor product of M1 and M2, denoted M1⊗M2 is the unique R-module
together with an injective bilinear map b : M1 ×M2 → M1 ⊗M2 such that the universal property
is satisfied. That is, for for any R-module N with corresponding bilinear map ω : M1 ×M2 → N ,
there exists a unique homomorphism of modules ψ : M1⊗M2 → N such that the following diagram
commutes. In words, ψ ◦ b = ω.

Again, uniqueness of the direct sum follows automatically from the universal property so only the
existence needs to be verified with a construction, which will be ommited in this document. See [2]
for a complete discussion on the tensor product.
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M1 ×M2 N

M1 ⊗M2

b

ω

ψ

∃!

Figure 4. Universal Property of Tensor Products

Extending the tensor product to the categories of vector spaces, abelian groups, and commutative
rings requires verifying that the resulting module has the necessary extra structure. The reasoning
for vector spaces and abelian groups is identical to that for direct sum. However, extending this
definition to rings again takes some work. First note the shorthand b(m1,m2) = m1 ⊗ m2, and
use this to define the multiplication operation between the tensor products of two rings R and S.
Specifically, (r1⊗s1) · (r2⊗s2) = (r1r2⊗s1s2). Of course, the linear map b has no promise of being
surjective and so not every element in S ⊗ R is expressible as the “pure tensor” r ⊗ s. However,
every element is expressible as a linear combination of pure tensors and so the given definition
of multiplication still extends to the tensor product as a whole. This definition of multiplication
satisfies all of the necessary properties giving the tensor product of rings. In fact, if the original
rings has identities 1R and 1S , then the element 1R ⊗ 1S is an identity in the tensor product that
agrees with the bilinear map.

Example 2.9. Again consider the vector spaces Rn and Rm. This example will demonstrate the
isomorphism Rn ⊗ Rm ∼= Rnm by showing Rnm satisfies the necessary universal property. For
notational convenience, denote the elements of Rnm by n ×m matrices. Then define the bilinear
map b : Rn × Rm → Rnm by

b : (~v, ~w) 7→ ~v ~wT .

Where the above definition considers the matrix multiplication of the column vector ~v with the row
vector ~wT . Next consider a vector space V with bilinear map ω : Rn × Rm → V and observe how
the universal property mapping ψ must act on the basis vectors. Let {e1, e2, . . . , en} denote the
standard basis for Rn and {f1, f2, . . . , fm} denote the standard basis for Rm. Then note that the
set

{
eif

T
j

}
letting i and j range gives a basis for Rnm where the matrix eif

T
j has a 1 in the i, j

entry and 0’s elsewhere. Next, note that by the composition requirement, ψ(eif
T
j ) = ω(ei, fj). But

then this defines the mapping ψ on a basis and thus extends ψ to the following unique linear map.

A 7→
∑

Aijω(ei, fj).

This indeed satisfies the composition requirement completing the proof. Similarly, Cn⊗Cm ∼= Cnm.

Example 2.10. Consider the quotient rings Z[α]/(α2) and Z[β]/(β2). This example will show
that Z[α]/(α2)⊗ Z[β]/(β)2 ∼= Z[α, β]/(α2, β2). Again, it must only be shown that Z[α, β]/(α2, β2)
satisfies the relevant universal property by the uniqueness of the universal property. Now define
the bilinear map b : Z[α]/(α2)× Z[β]/(β2)→ Z[α, β]/(α2, β2) by

b : (n1 +m1α, n2 +m2β) 7→ (n1 +m1α)(n2 +m2β)

By this choice of bilinear map, note that if a map ψ is to fulfill the universal property, it must
satisfy ψ(1) = ω(1, 1), ψ(α) = ω(α, 1), ψ(β) = ω(1, β), and ψ(αβ) = ω(α, β). This defines ψ on the
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additive basis, which forces ψ to have the following expression.

ψ : n+ aα+ bβ +mαβ 7→ n · ω(1, 1) + a · ω(α, 1) + b · ω(1, β) +m · ω(α, β)

This indeed satisfies the universal property, concluding the proof.

Next note some important properties of tensor product. The initial ordering of the modules is
simply notational and so there is an isomorphism M1 ⊗M2

∼= M2 ⊗M1, giving commutativity of
the tensor product operation. The tensor product of multiple modules is defined by considering
some a Cartesian product M1×M2×M3 together with multilinear maps that have multiple entries
and are linear in each entry; with this definition, associativity is automatic.

An interesting property of tensor product is that M ⊗ R ∼= M for an R-module M . The proof for
this follows the same process as in Example 2.9. It must only be shown that M together with a
bilinear map satisfies the defining universal property of tensor product and thus must be isomorphic
to the tensor product by the universal property. Note that a real vector space is an R-module, and
so Rn ⊗ R ∼= Rn, which agrees with 2.9. Further recall that abelian groups and commutative rings
are considered as Z-modules and so G ⊗ Z ∼= G for an abelian group G and R ⊗ Z ∼= R for a
commutative ring R.

Tensor products and direct sums have an interesting relationship. In particular, for modules M1,
M2, and M3, it follows that M1 ⊗ (M2 ⊕M3) ∼= (M1 ⊗M2)⊕ (M2 ⊗M3). That is, tensor product
distributes over direct sum. The verification for this is again in the same spirit as in Examples 2.7
and 2.9. That is, it must be shown that M1 ⊗ (M2 ⊕M3), which satisfies the defining property of
tensor product fulfills the defining universal property of direct sum for (M1 ⊗M2)⊕ (M2 ⊗M3).

For convenience, all of the properties of direct sum and tensor product discussed previously are now
summarized.

Claim 2.11. Let M , M1, M2, and M3 be R-modules. However, the following holds for vector
spaces, abelian groups, and commutative rings.

(i) Commutativity of direct sum: M1 ⊕M2
∼= M2 ⊕M1.

(ii) Associativity of direct sum: M1 ⊕ (M2 ⊕M3) ∼= (M1 ⊕M2)⊕M3.
(iii) {0} acts as an identity for direct sum: M ⊕ {0} ∼= M .
(iv) Commutativity of tensor product: M1 ⊗M2

∼= M2 ⊗M1.
(v) Associativity of tensor product: M1 ⊗ (M2 ⊗M3) ∼= (M1 ⊗M2)⊗M3.
(vi) R acts as an identity for tensor product: M ⊗R ∼= R.

(vii) Tensor product distributes over direct sum: M1 ⊗ (M2 ⊕M3) ∼= (M1 ⊗M2)⊕ (M1 ⊗M3).

All of these properties were discussed previously.

3. Verifications

Proof of Existence of Definition 2.3. The existence of a ring completion is shown through
an explicit construction. Take any commutative semiring with additive cancellation (S,+, ·) and
consider the equivalence relation ∼ on S × S defined as follows: for (a1, b1), (a2, b2) in S × S, then
let (a1, b1) ∼ (a2, b2) if a1 + b2 = a2 + b1. The aim is to make the set of equivalence classes under
∼ into a ring.
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First, define the additive operation + by

[(a, b)] + [(c, d)] = [(a+ c, b+ d)]

Next, define the multiplicative operation · by

[(a, b)] · [(c, d)] = [(ac+ bd, ad+ bc)]

This proof aims to verify that the set of equivalence classes S × S/ ∼ paired with the operations
(+, ·) forms a commutative ring that is a ring completion of S.

It must be verified that the additive operation is well defined, so consider elements (a1, b1), (a2, b2),
(c1, d1), (c2, d2) in S × S such that (a1, b1) ∼ (a2, b2) and (c1, d1) ∼ (c2, d2). Then, I claim that
(a1 + c1, b1 +d1) ∼ (a2 + c2, b2 +d2). Indeed, this satisfies the definition of the equivalence relation,
for

(a1 + c1) + (b2 + d2) = (a1 + b2) + (c1 + d2)

= (a2 + b1) + (c2 + d1) = (a2 + c2) + (b1 + d1)

where the above computation used the substitutions a1+b2 = a2+b1 and c1+d2 = c2+d1 promised
by the relations (m1,m2) ∼ (m′1,m

′
2) and (l1, l2) ∼ (l′1, l

′
2). This confirms that + is well-defined on

(S × S)/ ∼.

The transitivity and commutativity of + on the equivalence classes follows immediately from the
commutativity and transitivity of the operation + on S.

Next, note that the additive identity in (S × S)/ ∼ is given by [(0, 0)] where 0 denotes the identity
element in S. Indeed, we have [(a, b)] + [(0, 0)] = [(a, b)] for any element [(a, b)].

The proposed ring has an inverse mapping for the addition operation. Consider an element [(a, b)].
Then, I claim the element [(b, a)] forms the desired inverse. To see this, consider the sum [(a+b, b+a)]
and note that (a+ b) + 0 = 0 + (b+ a), which shows [(a+ b, b+ a)] = [(0, 0)].

It must be verified that the multiplicative operation is well-defined before verifying any further
properties. Consider the elements (a1, b1) ∼ (a2, b2) and (c1, d1) ∼ (c2, d2) in S × S. It then must
be verified that (a1c1 + b1d1, a1d1 + b1c1) ∼ (a2c2 + b2d2, a2d2 + b2c2). To accomplish this, consider
the following M1,M2 ∈ S:

M1 = c2(a1 + b1) + b2(c1 + d1) + b2c2

M2 = c1(a2 + b2) + b1(c2 + d2) + b1c1

Next, observe that using the relations a1 + b2 = a2 + b1 and c1 + d2 = c2 + d1, it follows that
a1c1 + b1d1 +M1 = a2c2 + b2d2 +M2.

a1c1 + b1d1 +M1 = a1c1 + b1d1 + c2a1 + c2b1 + b2c1 + b2d1 + b2c2

= (a1 + b2)(c1 + c2) + (d1 + c2)(b1 + b2)

= (a2 + b1)(c1 + c2) + (d2 + c1)(b1 + b2)

= a2c2 + b2d2 + c1a2 + c1b2 + b1c2 + b1d2 + b1c1 = a2c2 + b2d2 +M2

A similar process shows that a1d1 + b1c1 +M1 = a2d2 + b2c2 +M2. Then, summing the two results
gives

(a1c1 + b1d1) + (a2d2 + b2c2) + (M1 +M2) = (a2c2 + b2d2) + (a1d1 + b1c1) + (M1 +M2)
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Applying the additive cancellation property of S to the term (M1 +M2) gives the desired relation
and provides the conclusion (a1c1 + b1d1, a1d1 + b1c1) ∼ (a2c2 + b2d2, a2d2 + b2c2) and so the
multiplicative operation is well defined.

The transitivity of the multiplicative operation follows directly from + and · transitive in S. Simi-
larly, the commutativity of the multiplicative operation follows directly from the commutativity of
+ and · in S.

Next, note that the element [(1, 0)] acts as an identity element for the multiplicative operation.
Indeed, [(1, 0)] · [(a, b)] = [(a, b)] for any element [(a, b)].

It only remains to show that + distributes over · to verify that S × S/ ∼ forms a ring. Indeed, for
elements [(a, b)], [(c, d)], [(e, f)]:

[(e, f)] · ([(a, b)] + [(c, d)]) = [(e, f)] · [(a+ c, b+ d)]

= [(ea+ fb+ ec+ fd, eb+ ed+ fa+ fe)]

= [(ea+ fb, eb+ fa)] + [(ec+ fd, ed+ fc)] = [(e, f)] · [(a, b)] + [(e, f)] · [(e, d)]

Thus we have that (S×S)/ ∼ forms a commutative ring under the proposed operations. However,
it remains to show that (S × S)/ ∼ is a valid ring completion. The necessary inclusion map
i : S → (S × S)/ ∼ is given by i(s) = [(s, 0)]. Then, take any ring R′ and homomorphism
ϕ : S → R′; the existence and uniqueness of a commuting ring homomorphism ψ : (S×S)/ ∼→ R′

must be shown.

Uniqueness follows quickly from its homomorphism properties and the commutativity of the uni-
versal property. Indeed, take two commuting ring homomorphisms ψ and ψ′ from S × S/ ∼ to
R′. Then, the restrictions ψ ◦ i = ϕ and ψ′ ◦ i = ϕ paired with i injective gives that ψ = ψ′ over
the image i(S). Then observe that any element [(a, b)] is the composition of elements in i(S) by
[(a, b)] = [(a, 0)] − [(b, 0)]. Then, the homomorphism properties of rings extends ψ and ψ′ to be
equivalent over all of (S × S)/ ∼ giving uniqueness.

It only remains to show existence of the homomorphism. The map ψ : [(a, b)] 7→ ϕ(a)−ϕ(b) works.
Commutativity follows easily, for (ψ ◦ i)(s) = ψ([(s, 0)]) = ϕ(s) for all s ∈ S. Now, it must be
verified that ψ is a homomorphism. So, consider elements [(a, b)] and [(c, d)] of the ring completion.

The following equality chain shows that the the additive property of ϕ gives the additive property
of ψ.

ψ([(a, b) + (c, d)]) = ψ([(a+ c, b+ d)]) = ϕ(a+ c)− ϕ(b+ d)

= (ϕ(a)− ϕ(b)) + (ϕ(c)− ϕ(d)) = ψ([(a, b)]) + ψ([(c, d)])

Similarly, the additive and multiplicative property of ϕ gives the multiplicative property of ψ.

ψ([(a, b)] · [(c, d)]) = ψ([(ac+ bd, ad+ bc)])

= ϕ(ac+ bd)− ϕ(ad+ bc) = ϕ(a)ϕ(c) + ϕ(b)ϕ(d)− ϕ(b)ϕ(c)− ϕ(a)ϕ(d)

= (ϕ(a)− ϕ(b))(ϕ(c)− ϕ(d)) = ψ([(a, b)]) · ψ([(c, d)])

Finally ψ(1) = ψ([(1, 0)]) = ϕ(1) = 1, completing the proof.

�



CHAPTER 3

Topology

1. The Category of Topological Spaces

Recall that a metric space is simply a set paired with a way of telling distance between two points
and that a metric spaces gives rise to a notion of open sets. To begin this section, consider the
following instance of a metric space.

Example 3.1 (The Interval as a Metric Space). Consider the metric space that takes the interval
[0, 1] as a set and define the distance between two points x, y ∈ [0, 1] to be |x − y|. This gives a
notion of open sets on the interval by declaring a set U open if for every point x in the set there is
some distance ε such that all points of distance less than ε from x are contained in U . For instance
the open interval (1/3, 2/3) would be declared open.

This section addresses a new category — the category of topological spaces. Topology looks at the
open sets that come as a consequence of a metric and asks and asks: what if the only known thing
about a space is what the open sets are. What information does this give about the space?

Common terminology hints at this central role of open sets in topology. A set has a topology if it is
known what subsets are open and a set is topologized through the declaration of the open subsets.
Below is a formal definition of a topological space. Keep in mind a topological space is simply a set
together with a collection of open sets, often denoted T , that follows some rules.

Definition 3.2 (Topological Space). Given a set X and T ⊆ P(X), the pair (X, T ) is called a
topological space if:

(i) The empty set ∅ and the full set X are in T .
(ii) For every set Uα in T where α ∈ I, the infinite union ∪α∈IUα is in T .

(iii) For any two subsets U1 and U2 in T , the intersection U1 ∩ U2 is in T .

For U ∈ T , the element U is called an open set and its complement U is called a closed set.

Compare the above definition to the open sets in a metric space. When the open sets are given
by a metric, it follows that the infinite union of open sets is open and the finite intersection of
open sets is open. Topology focuses more directly on the open sets themselves and so makes these
union and intersection properties the defining characteristics of open sets. Topology describes the
same structure as metric spaces, but from a different point starting point. It should be emphasized,
however, that topology is more general than the notion of a metric space. While all metric spaces
are topological spaces, not all topological spaces can be given a valid metric. Below is the same set
[0, 1] defined earlier, but now considered as a topological space.

23
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Example 3.3 (The Interval as a Topological Space). Consider the topological space by considering
the set [0, 1]. Let the open sets T on the topological space be the smallest1 collection of sets T
such that each open interval (a, b) is in T and that T defines a valid topology on the interval. This
defines the same open sets that result from Example 3.1 by using the standard metric2, but from a
purely topological point of view. The interval is denoted by I and understood to represent the set
[0, 1] wit the standard topology.

The topology on a space X that results from the standard metric as in the above example is called
the standard topology on X.

The category of topological spaces is still incomplete — topological objects require some notion of
morphisms between them. The inspiration for a good choice of morphism comes from the notion of
continuous maps between metric spaces. In metric spaces, one equivalent way to define continuity
is through open sets. This definition fits nicely in topology, so the category of topology borrows
this definition to define continuity between topological spaces, which will be the morphisms of the
category.

Definition 3.4 (Continuous Function). Take two topological spaces and corresponding open sets
(X, TX) and (Y, TY ). A function between the spaces f : X → Y is called continuous if for every
open set V ∈ TY , its inverse image is open: f−1(V ) ∈ TX .

As an example of a continuous function, consider the following mapping between intervals.

Example 3.5. As an example of a continuous function, consider the interval I with the standard
topology and let the function f : I → I be given by f(x) = 0. To see that this map is continuous,
take any set V in the codomain. Consider two cases: 0 ∈ V and 0 6∈ V . In the 0 ∈ V case, then
the inverse image is the entire domain, that is f−1(V ) = I, and the domain as a whole is open. In
the case that 0 6∈ V , then the inverse image is the empty set, in other words f−1(V ) = ∅, and the
empty set is open. Thus f is continuous.

Note that the above example does not actually depend on the topology of I. This unusual; in fact,
the topology typically has a large impact on whether a function is continuous.

Example 3.6. Take two topological objects (I1, T1) and (I2, T2) where I1 and I2 denote the interval
and T1 and T2 will be discussed later. Then, let f : I1 → I2 be a function given by f(x) = x. Now
consider two possibilities:

• Firstly, take T1 to be the power set P(I1) and take T2 = {∅, I2}. Then, the preimage of
every set V in I2 is indeed open, for every set in I1 is open and thus f is continuous.
• Next, swap the topologies. Take T1 = {∅, I1} and T2 = P(I1). Then, many open sets have

a non-open preimage. For instance, the set {0} ⊂ T2 is open in this topology, but the
preimage is given by {0} ⊂ I1, which is not one of the two open sets I1. Thus this map is
not continuous.

As hinted at before, the category of topological spaces is similar to the category of metric spaces.
Given a metric space, the objects can be translated to topological objects and the continuous
functions between metric spaces can interpreted as continuous functions between topological objects.

1T1 is smaller than T2 if T1 ⊂ T2
2A standard metric measures distance by Euclidean standards as in the real world
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This idea is technically a functor from the category of metric spaces to the category of topological
spaces. This functor can be used to define topological objects as in the following example.

Example 3.7 (S2). Consider the unit sphere as understood as a metric space. That is, take the
set X ⊂ R3 defined by X = {(x, y, z) ∈ R|x2 + y2 + z2 = 1}. Then, consider the standard metric d
in R3 and the pair (X, d) defines the unit sphere as a metric space. By considering all open sets T
as defined by the metric d, the pair (X, d) then defines the topology of the two dimensional sphere
S2. Take particular note that this process is due to the functor from metric spaces to topological
spaces.

This process of defining topological spaces through metric spaces provides many fundamental topo-
logical objects that we can build upon. In particular, the topology of an interval I, the topology of
any sphere Sn, and the topology of Rn itself arise by using the standard metric of Rn.

Recall that an isomorphism as generally defined in category theory is a morphism that has an
inverse morphism, suggesting the following definition in topology.

Definition 3.8 (Isomorphism). A function f between topological spaces is an isomorphism if f is
continuous with a continuous inverse. An isomorphism of topological spaces is denoted by ≈.

An isomorphism in topology corresponds to a mapping that takes one space to another without
removing or adding connections between the space. Consider the following simple example of an
isomorphism.

Example 3.9. Take the spaces [0, 1] and [0, 2] equipped with the standard topology as defined by
the standard metric. Then the mapping f : [0, 1]→ [0, 2] defined by f : x 7→ 2x is an isomorphism.
Indeed, for any open set U ⊂ [0, 2], each point y has a distance εy such that all points within distance
εy from y are contained in U . The preimage f−1(U) is exactly U with each point y relabeled by
y/2, so considering the distance εy/2 for each point y demonstrates that f−1(U) is open, giving
continuity of f . A similar argument applies to the inverse f−1 : y 7→ y/2, thus f is an isomorphism.

2. Some Mappings and Corresponding Topologies

This section addresses three useful mappings in topology: the quotient map, the inclusion map,
and the projection map. Ideally, these three maps will be continuous functions so that they are
morphisms of the category. However, as demonstrated in example 3.6, changing the topology can
make a function continuous. Each of these three mappings has a corresponding topology that
provides the desired continuity. With the completion of this section, there will be no need to stress
about whether a quotient map, inclusion map, or projection map is continuous — the assumed
topology will make it continuous.

A quotient map is a map from a topological X to a quotient X/ ∼ by some equivalence relation ∼
on X. Let Y denote the set of equivalence classes X/ ∼. Because elements of Y are subsets of X,
there is a natural choice of topology TY . For a single equivalence class [x] ∈ Y , the natural choice
is to say [x] ∈ TY exactly when [x] ∈ TX . In general, any group of equivalence classes ∪α[xα] in Y
should be open in Y exactly when ∪α[xα] is open in X. This topology makes the mapping x 7→ [x]
continuous. However, the quotient map is a better starting point to define the quotient topology,
but note that the following definition is inspired by the above.
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Definition 3.10 (Quotient Map and Quotient Topology). Consider topological spaces (X, TX),
(Y, TY ) along with a surjective function q : X → Y . Further restrict q such that V ∈ TY if and
only if q−1(V ) ∈ TX . Then, q is a quotient map. Note that in the case that TY is not defined, a
specified quotient map defines a quotient topology on Y .

Note that q requires exactly the sets such that it is always continuous. The condition V ∈ TY if
and only if q−1(V ) ∈ TX is analogous to the condition ∪α[xα] ∈ TY if and only if ∪α[xα] ∈ TX
discussed previously. However, the quotient map is a more natural starting point and gives the
equivalence relation immediately by x0 ∼ x1 if and only if q(x0) = q(x1). The following example
defines a commonly used quotient map.

Example 3.11. An example of a quotient map that is widely used begins by considering a topo-
logical space X and a subspace A ⊂ X. Then apply the equivalence relation ∼ defined by x ∼ x
and a1 ∼ a2 if a1, a2 ∈ A. This defines a quotient map and corresponding quotient object X/ ∼,
which is often denoted X/A. This quotient map collapses the set A ⊂ X to a point.

Many interesting topological objects arise from taking quotient maps.

Example 3.12 (RP 1 ≈ S1). The real projective line, denoted RP 1, is defined by considering the
equivalence relation ∼ on R2 \ {(0, 0)} where v1 ∼ v2 if v1 = λv2 for some λ 6= 0. Then, the real
projective line is the corresponding quotient space:

RP 1 = (R2 \ {(0, 0)})/ ∼

The points making up half a unit circle are a set of representatives for RP 1, but the nature of the
equivalence relation makes it so that the oposite ends of this half circle are “connected”, suggesting
RP 1 ≈ S1. An explicit isomorphism ϕ : RP 1 7→ S1 motivated by the complex map z 7→ z2 is given
by

[~v] 7→ 1

‖v‖2

(
vx − vy
2vxvy

)
Real projective space RPn in general is constructed by applying the same equivalence relation on
Rn+1 \ {~0}. This can be further extended to complex projective space as in the following example,
which gives a property of the sphere key to K-Theory.

Example 3.13 (CP 1 ≈ S2). Similar to the previous example, the complex projective line is
denoted CP 1 and is given the equivalence relation ∼ on C2 \ {(0, 0)} given by v1 ∼ v2 if v1 = λv2
for some λ 6= 0, but λ is now allowed to be complex. Then the complex projective line is then the
corresponding quotient space:

CP 1 = (C2 \ {(0, 0)})/ ∼
The space CP 1 is defined using a four dimensional space and so is difficult to visualize. However,
note the isomorphism CP 1 ≈ S2. The bottom line for the justification involves the two injective
maps ϕ1 : S2 \ {(0, 0, 1)} → CP 1 and ϕ−1 : S2 \ {(0, 0,−1)} → CP 1 defined by

ϕ1 : (x, y, z) 7→
[(

x+iy
1−z
1

)]
and ϕ−1 : (x, y, z) 7→

[(
1

x−iy
1+z

)]
It follows that ϕ1(x, y, z) = ϕ−1(x, y, z) over their shared domain by remembering x2 +y2 + z2 = 1.
The image of these two maps together is all of CP 1 and so considering these two maps together
provides an isomorphism S2 → CP 1. For the interested reader, the idea behind the maps ϕ1
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and ϕ−1 is the combination of homogeneous coordinates for projective space and stereographic
projection for the sphere.

Along with the quotient topology and corresponding quotient map, there is a subspace topology
and corresponding inclusion map. Consider a topological space (X, TX) and an open subset A ⊂ X
with no pre-defined topology. However, the subset A can borrow topology from the larger space X
in a natural way: define TA by U ∈ TA exactly when U ∈ TX . However, note that this definition
only works when A is open in X because for A to be a topological space, the whole space must
be open. A construction that works when A is not open is given by TA = {U ∩ A|U ∈ TX}. This
gives the same open sets as previously discussed for A open, but also defines a valid topology for A
closed. This topology is constructed exactly so that the inclusion map i : A→ X given by i(a) = a
is continuous. However, defining the inclusion map itself serves as a better starting point, but the
following definition is motivated by the above.

Definition 3.14 (Inclusion Map and Subspace Topology). Take topological spaces (A, TA) and
(X, TX). Then, an injective map i : A→ X is called an inclusion map when U ∈ TA if and only if
there exists a V ∈ TX such that V ∩ i(A) = i(U). In the case that TA is not defined, a specified
inclusion map defines a subspace topology on A.

The defined subspace topology is equivalent to the topology discussed previously, and note this
construction is perfectly engineered so that the inclusion map is continuous. Take an inclusion map
i : A→ X and an open set V ⊂ X. The parts of X that do not contain the image of A is irrelevant
to the inverse image, so i−1(V ) is equivalent to i−1(i(A)∩V ). Then, by definition, this corresponds
to an open subset U in A, giving continuity.

Example 3.15. Take the real line R and the subspace [0, 1] ⊂ R both equipped with the standard
topology. [0, 1] is a natural subspace of R, so there is an inclusion i : [0, 1] → R. However, note
that sets such as [0, 1] and [0, 1/2) are open in [0, 1] but are not open in the larger space R. This
discrepancy is accounted for by the intersection with i(A) in definition 3.14.

So, the quotient map is paired with the quotient topology and the inclusion map is paired with the
subspace topology. Now consider the projection map, which is paired with the product topology.

Definition 3.16 (Projection). Let X1, . . . , Xn be spaces with topologies T1, . . . , Tn. Then the
projection onto the kth factor is given by the following.

p : X1 × · · · ×Xk × · · · ×XN → XK

p : (x1, . . . , xk, . . . , xn) 7→ xk

However, whether such a projection is continuous depends on the choice of topology for the product
X1 × · · · ×Xn. The natural choice for this topology is the product topology, which is best defined
through a universal property.

Definition 3.17 (Product Topology). Let X1, . . . , Xn be spaces with topologies T1, . . . , Tn. Then,
consider the family of projections onto the kth factor pk : X1, . . . , Xn → Xk. Then, the product
topology T× is the unique topology that satisfies the following universal property of product topol-
ogy. That is, the product topology is such that each pk is continuous, and for any topological space
Y together with a family of continuous map fk : Y → Xk there exists a unique continuous map
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f : Y → X1 × · · · ×Xn such that the following diagram commutes for each k. That is, fk = pk ◦ f
for each k.

Xk Y

X1 × · · · ×Xn

pk

fk

f

∃!

Figure 1. Universal Property of Product Topology

This definition still requires verifications of existence and uniqueness. Uniqueness follows auto-
matically from the universal property; the proof follows similarly here even though the arrows are
pointing in the opposite directions. However, the existence of a product topology must be verified
through an explicit construction.

The bottom line with the product topology is that the universal defines the topology of X1×· · ·×Xn

exactly so that each of the projections pk is continuous. When assuming the product topology, there
is no need to stress about whether pk is continuous — it will be just as the inclusion and quotient
maps will be.

3. Nice Properties of Topological Objects

Topology does not assume a lot — only any set and a notion of open sets. This results in there being
a lot of possible topological objects. Some of these objects are intuitive and have nice properties,
but many of these objects are unintuitive and often difficult to work with. This section will aim to
identify two nice properties — Hausdorff and compact. Restricting spaces to having these two nice
properties will throw out the troublesome topological spaces that would obstruct the remainder of
the story.

First note a nice property of the topological space R2 with the standard topology (which is defined
by the standard metric). For any two distinct points p, q ∈ R2, it is possible to draw two tiny
open sets — one surrounding around p and one surrounding q — such that the two open sets do
not intersect. This corresponds to p and q having some distance between them — some “space” to
themselves.

However, not all topological objects have this property. For instance, consider the same set R2

with a ridiculous metric: the distance between any two points is 0. The visual here is that all of
R2 has been squashed into a single point. This then results in a ridiculous topology: T =

{
∅,R2

}
,

containing only the empty set and the full set with nothing else. In this case, given any two points
p and q it is impossible to draw two disjoint open sets where one contains p and the other contains
q. The reason for this is that there is literally no distance between p and q. The best way to avoid
working with this topological object is by imposing the Hausdorff condition. The definition follows,
but intuitively think of the Hausdorff condition as requiring that any two distinct points have a
nonzero distance between them.
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Definition 3.18 (Hausdorff). Let X be a topological space. We call X Hausdorff if for any pair
of distinct points p, q ∈ X(p 6= q), there exists open sets Up with p ∈ Up and Uq with q ∈ Uq such
that Up ∩ Uq = ∅.

The Hausdorff property is required for the story to move forward. Another necessary property is
compactness, which prevents the topological spaces from getting too “big”. For example, consider
the interval I with the standard metric in comparison to R with the standard metric. The space R
is unbounded and in some sense bigger than I. The following definition characterizes this difference
using only open sets.

Definition 3.19 (Compact). A topological space X is compact if every open cover of X has a
finite subcover. That is, for any cover X = ∪α∈IUα with open Uα ⊂ X for all α ∈ I, then there
exists α1, α2, . . . , αn ∈ I such that X = Uα1

∪ Uα2
∪ . . . Uαn

.

With this criterion, spaces such as Dn and Sn are compact and spaces such as Rn are not compact.
To practice, consider the following verification that R is not compact.

Example 3.20 (R2 is not compact). In order to show R is not compact, it suffices to bring up a
specific infinite open cover and prove it does not have a finite subcover. So consider the following
infinite cover:

C = {(k − 1, k + 1)× R : k ∈ Z}

However, consider removing any element (k − 1, k + 1) from the set. Then, the resulting set
C \ {(k − 1, k + 1)} does not contain the point k in any of its sets and so it does not cover all of R.
Then, there is no way to reduce the cover and thus there is no finite subcover.

An additional nice property of topological spaces is for the topological space to have a particular
point within the topological space. Often times operations on topological spaces require choosing
an arbitrary point within the space and so having a particular point x in a topological space X in
mind is useful. All such pairs (X,x) is an important category.

Definition 3.21 (Pointed Topological Space). The category of pointed topological spaces has as
objects all pairs (X,x) such that X is a topological space and x ∈ X. The morphisms between two
pointed topological spaces (X,x) and (Y, y) is a continuous function f : X → Y with the additional
restriction that f(x) = f(y).

The operations wedge sum and smash product are discussed in the following section and rely on
having a particular point within a topological space.

4. Operations on Topological Spaces

The cone operation C takes some topological space and expands it by making it into a cone. Before
giving the formal definition, here is an illustration. Begin with S0 — the set of two points. Then, as
is illustrates in figure ??, C(S0) would be create a low dimensional cone shape which is isomorphic
to the interval I. Then, C(I) would create a cone, which is isomorphic to the two dimensional disk
D2. If Cn denotes applying the cone operation n times, then Cn(S0) ≈ Dn in general.

The formal definition of the cone operation combines the product and quotient topologies.
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Definition 3.22 (Cone Operation). Take a topological space X. Then, taking the interval I =
[0, 1], the cone operation C is given by

C(X) = (X × I)/(X × {0})

Note the quotient of a topological space is given in example ??. Intuitively, this cone operation
takes extends the topological space into a new dimension by crossing with the interval and then
“pinches” the top.

Closely related to the cone operation is the suspension operation S. If the cone “cone-ifies” a
topological space, the suspension operation “sphere-ifies” the topological space. Again, before
giving the formal definition, consider an example sequence of suspension operations. Following
Figure ?? and beginning with S0, then S(S0) gives the circle S1 and applying the suspension again
gives S(S1) gives the sphere S2. Overall, if Sn denotes applying the suspension operation n times,
then Sn(S0) ≈ Sn in general.

The formal definition of the suspension follows uses a similar construction as the cone operation.

Definition 3.23 (Suspension Operation). Take a topological space X. Then, taking the interval
I = [0, 1], the suspension operation S is given by

S(X) = (X × I)/(X × {0, 1})

And so the suspension operation takes the Cartesian product with the interval and “pinches” two
sides together. The wedge sum aims to glue to spaces together at a point. To avoid an arbitrary
choice of point, only consider pointed topological spaces as defined previously.

Definition 3.24 (Wedge Sum). Take two pointed topological spaces (X,x) and (Y, y). Further
take the equivalence relation ∼ be defined by x ∼ y and every point relates to itself. Then the
wedge sum, denoted X ∨ Y is the pointed topological space

X ∨ Y = X ∪∗ Y/ ∼

Where ∪∗ denoted the disjoint union and the new point in the pointed topological space is chosen
to be x ∼ y.

Example 3.25. Consider the topological space S1 with some point x ∈ S1. The wedge sum S1∨S1

then glues the points together and results in a figure eight shape.

Related to the wedge sum is the smash product. To motivate the smash product, note that the
wedge sum considers two pointed topological spaces and aims to return a pointed topological space
— similar to the idea of direct sum. The smash product is then related to the idea of tensor product
in that it takes the Cartesian product of two pointed topological spaces and applies a quotient map
with the goal of providing a pointed topological space.

Definition 3.26 (Smash Product). Take two pointed topological spaces (X,x) and (Y, y). Then
the smash product X ∧ Y is given by

X ∧ Y = X × Y/(X ∨ Y )

Where X ∨ Y denotes (X × y) ∪ (x× Y ) in the Cartesian product.
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Note that the quotient map condenses every point containing either x or y in the quotient map into
a single point, so choosing this point allows the result to be a pointed topological space.

Example 3.27. Again consider the pointed topological space S1 with some point x ∈ S1. The
smash product S1 ∧ S1 can be visualized as follows. Consider the torus S1 × S1. Then x × S1

corresponds to a circle around the outside edge of the torus whereas S1 × x corresponds to a circle
through the hole of the torus. The union of these is exactly S1∨S1 and so S1×S1/(S1∨S1) allows
this figure eight shape to collapse to a point.

Example 3.28. Consider S1 ∧ I = (S1× I)/(S1 ∧ I). This space can be rewritten by the quotient

(I × I)/((S1 × {0, 1}) ∪ ({x0} × I))

for the pre-chosen point x0 ∈ S1. To see this, note that the quotient by (S1 × {0, 1}) glues the
space I × I into a cylinder and sets the interval I to a point. The quotient {x0} × I then sets S1

to a point, so this is identical to the defining expression of S1 ∧ I.

By the same reasoning, this conclusion holds more generally. That is, S1 ∧X is equivalent to the
space I ×X quotiented by the subspace (X ×{0, 1})∪ ({x0}× I). This is simply a stronger version
of the quotient SX = (I ×X)/(I × {0, 1}), thus there is a quotient map q : SX → S1 ∧X. This
gives the more general quotient map q : SnX → Sn ∧X. More detail of this construction is given
in [3, p. 12] under “reduced suspension” and in [4, p. 54].

Example 3.29. Take a topological space X with A ⊂ X. Further, for some space Y containing A
and X, denote Y ∪ CA to be the union of the two spaces by identifying each point in A ⊂ Y with
the corresponding point in A ⊂ CA. In the same way, denote Y ∪ CX to be the union by gluing
each point in A ⊂ Y onto the corresponding point in A ⊂ CA. With this notation, observe some
patterns.

(X ∪ CA)/CA ≈ X/A
To see this, first recall that the quotient sets the subspace X/A to a point. Now note that X ∩CA
is only A, so within X, this quotient will only collapse the subspace A to a point. Thus, rewrite
this quotient by X/A ∪ CA/CA, which is simply X/A by CA/CA a point. Now note a similar
relationship.

((X ∪ CA) ∪ CX)/CX ≈ SA
In the same fashion, note the intersection of each space in the union with CX and quotient each
space by this intersection. The quotient is then rewritten as X/X ∪ CA/A ∪ CX/CX. Note
that CA/A is equivalent to SA, for collapsing A to a point incorporates the extra quotient in the
definition of the suspension into the space. In other words, this pinches the opposite end of the cone.
X/X and CX/CX are both points, so the whole expression reduces to SA. One final relationship
follows by the same process.

(((X ∪ CA) ∪ CX) ∪ CX) ∪ C(X ∪ CA))/C(X ∪ CA) ≈ SX

5. Homotopy

An isomorphism between two spaces X and Y is quite rare and often difficult to prove. A more
relaxed condition, however, is if the spaces X and Y are homotopic, which this section will work
towards defining. However, the definition of homotopic functions must come before this definition
of homotopic spaces.
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Definition 3.30 (Homotopic Functions). Take Topological spaces X and Y with functions f, g :
X → Y . Then f is homotopic to g if there exists a continuous function H : X × [0, 1] → Y such
that H(x, 0) = f(x) and H(x, 1) = g(x). The homotopy is denoted by f ' g.

Homotopy indeed forms an equivalence relation. Informally, two functions are homotopic if one
function can be continuously deformed into another function. Consider the following example to
build intuition of homotopy.

Example 3.31. Consider the two functions f : I → R2 and g : I → R2 defined by f(x) = (x, 0)
and g(y) = (0, y). Then consider the function H : I × [0, 1] defined by H(z, t) = ((1 − t)x, ty).
This function is indeed continuous and satisfies H(x, 0) = f(x) and H(y, 1) = g(y) and thus f ' g.
Visually, f maps the interval onto the x axis whereas g maps the interval onto the y axis. H then
carries the image of the interval through the first quadrant from the x axis to the y axis.

The construction of the continuous function H applied a linear transition between the two functions
— a common technique.

The homotopy relation is not restricted to functions; two spaces can be homotopic. The idea of
relation of homotopic spaces is similar but weaker to an isomorphism of spaces. Recall that two
spaces are isomorphic if there exists two continuous functions between the spaces that compose to
the identity. Similarly, two spaces are homotopic of two functions compose to a function that is
homotopic to identity.

Definition 3.32 (Homotopic Spaces). Take topological spaces X and Y . We say X and Y are
homotopy equivalent if there exist continuous functions F : X → Y and G : X → Y such that
F ◦G ' IdY and G ◦ F ' IdX . Denote the homotopy with X ' Y .

A homotopy between spaces X and Y is not as strong as an isomorphism, but the two spaces will
still share many useful properties. In particular, a homotopy equivalence means that many of the
properties learned with K-theory will be the same.

Example 3.33. This example shows R2\{(0, 0)} ' S1. To see this, define F : R2\{(0, 0)} → S1 by
F : (x, y) 7→ (x, y)/|(x, y)|, which normalizes the point (x, y). Then consider the inclusion mapping
G : S1 → R \ {(0, 0)}. The composition F ◦G is exactly the identity and thus is homotopic to the
identity. For G ◦ F consider the linear homotopy H((x, y), t) = (1− t)(G ◦ F )((x, y)) + t Id((x, y)).

The spaces R/ {(0, 0)} and S1 both have some kind of “hole”, which is why this homotopy works.

Example 3.34. This example shows R ' {0} by considering the function F : R→ {0} by sending
everything to 0 and the inclusion function G : {0} → R. Then F ◦G is the identity so it must only
be verified that G◦F ' Id and again the liear homotopy H(x, t) = (1− t)(G◦F )(x)+ t Id(x) works.

Notice that R is homotopic to a single point. In fact, Rn is homotopic to a point for any n and so
homotopy classes ignore much information about the space. Spaces that are homotopic to a single
point often behave trivially and so get a name.

Definition 3.35 (Contractible). A topological space X is contractible if X ' {pt}.

If a space X is contractible, then X shares many of its properties with a point, thus many of the
properties of X will be trivial in some sense.
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Vector Bundles

To motivate vector bundles, consider any vector field any vector field over R2 and ask: what larger
object is a home for this vector field? A vector field is certainly not a point in R2, so what larger
object does the vector field lie inside of? To identify each vector of a vector field requires four
numbers: two numbers (x, y) to identify the location of the vector within the topological space
and two additional numbers

(
vx
vy

)
to communicate the direction of the vector at this point. This

suggests that this vector field rests inside of R2×R2 or something similar; denote this TR2 for now.
Interpret TR2 as the topological space R2 with a copy of the vector space R2 at every point. There
is an important distinction between the structure on the two sets R2. The topological space R2

is where each point (x, y) resides and the vector space R2 is where each vector
(
vx
vy

)
resides. This

distinction opens the door for changing the topological space R2 to any arbitrary topological space.

Now consider changing the topological space, which is perhaps better called the base space, to the
sphere S2. What would a field look like over S2? Not much changes: a vector field would associate
to each point in S2 some vector in the plane R2 tangent to the sphere. Then, the whole space that
the vector field lives inside is the topological space S2 with a vector space R2 associated at every
point, which is denoted TS2.

The examples TR2 and TS2 as motivated by vector fields are called tangent bundles, which place
vector spaces tangent to the space. However, vector bundles in general can be constructed by
placing any vector fields on the surface of a base space so long as the placement abides by some
rules.

1. Definition and Examples

The definition of vector bundles assigns rules on how to place vector spaces on the surface of a
topological object and still get an interesting space.

Definition 4.1 (Vector Bundle). Take X as a topological space. Then, a topological space E
paired with a continuous map p : E → X is a vector bundle over X if:

(i) For each x ∈ X, the preimage p−1(x) is a finite vector space with the appropriate subspace
topology induced from E.

(ii) E is locally trivial. This requires that for each x ∈ X, there exists an open neighborhood
U ⊂ X containing x such that the preimage of space with respect to the projection mapping
is trivial. In other words, p−1(U) ≈ U × V for a vector space V .

The topological space denoted X in the definition is called the base space and represents the
topological spaces R2 and S2 discussed earlier. Then at each point in the base space X, there is the

33
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vector space p−1(x) which is called the fiber at X and is equivalent to a copy of the vector space
R2 at a point of the sphere discussed previously. A simple example of a vector bundle follows.

Example 4.2 (Cylinder). Take S1 with the standard topology to be the base space. As a vector
space, take R and consider the vector bundle given by the product S1 ×R. Giving R the standard
topology induces the product topology on S1 × R and take the projection map p : S1 × R → S1

given by p : (x, v) 7→ x to be the continuous projection map. Then, each preimage p−1(x) is a copy
of the vector space R with the appropriate topology and thus this gives a vector bundle. In fact,
this vector bundle should be visualized as a cylinder.

Figure 1. Cylinder as a Vector Bundle

The above construction of the cylinder demonstrates that fibers need not be tangent to the base
space, but in fact fibers are not required to correspond to the dimension of the base space. The
example of the cylinder is a specific case of the idea of a trivial bundle which is defined as follows.

Definition 4.3 (Trivial Bundle). Let X be a topological base space and let V be a vector space
with a topology. Then, taking the product topology, X×V forms a topological space. This together
with the projection map p : X × V → X given by p : (x, v) 7→ x forms a vector bundle. This vector
bundle is called a trivial bundle. If E is of dimension n, the trivial bundle is often denotes εn.

With this construction of the trivial bundle, note the “X×V ” within the “locally trivial” condition
of Definition 4.1 is understood to have the structure of the trivial bundle. Trivial bundles, such as
the cylinder, automatically satisfy this condition. In general, however, this local triviality condition
must be verified by constructing an isomorphism to a trivial bundle for each local region. However,
in order to construct such an isomorphism, we must first complete the category of vector bundles
by providing a notion of morphisms between vector bundles. Vector bundles contain the structure
of both a topological space and of many vector spaces, so a homomorphism of vector bundles aims
to preserve both of these structures. These homomorphisms will be between bundles with the same
base space and are defined as follows.

Definition 4.4 (Homomorphisms of Vector Bundles). Take two vector bundles E and F both with
base space over X. Then, let p : E → X and q : F → X be the continuous maps. A mapping
ϕ : E → F is a homomorphism of vector bundles if:

(i) qϕ = p
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(ii) ϕ : E → F is a homomorphism of topological spaces; that is, ϕ is continuous.
(iii) For each x ∈ X, the mapping ϕ : p−1(x)→ q−1(x) is a homomorphism of vector spaces; that

is, ϕ is a linear map between these vector spaces.

The definition of isomorphism for vector bundles carries over from the definition of isomorphism
in category theory: a homomorphism with a homomorphism as an inverse. However, some of the
homomorphism properties of the inverse follow automatically. For instance, take vector bundles
p : E → X and q : F → X and a bijective homomorphism ϕ : E → F . It follows immediately
from qϕ = p that pϕ−1 = q, so this does not need to be checked. Additionally, a bijective linear
map will have a linear inverse. Then, it does not need to be verified that ϕ−1 maps the fibers
in a linear way because it is known that ϕ does. However, the continuous property of ϕ−1 does
not follow automatically and is typically the most difficult part of isomorphism proofs. With these
observations, an isomorphism can be defined in the following more practical way.

Definition 4.5 (Isomorphism). For two vector bundles p : E → X and q : F → X, a map
ϕ : E → F is defined to be an isomorphism if it is a bijective homomorphism with continuous
inverse.

Typically, the most difficult part of verifying a map is an isomorphism is the continuous inverse
condition. Due to this, it is most convenient to verify isomorphisms with the following result.

Lemma 4.6. For two vector bundles p1 : E1 → X and p2 : E2 → X over the same base space, a
continuous map h : E1 → E2 is an isomorphism if it takes each fiber p−11 (x) to the corresponding
fiber p−12 (x) by an isomorphism of vector spaces.

According to this Lemma, having that each fiber is an isomorphism is enough to know that a
continuous map is an isomorphism. This again hints that a vector bundle is simply a collection of
vector spaces with some extra topological structure. [4, p. 8] gives a technical proof of this result.

The most common isomorphism to see is a trivialization isomorphism — an isomorphism to the
trivial bundle, which is necessary to verify the local triviality condition in the following examples.
The example of a Möbius band as a vector bundle is the simplest example of a nontrivial vector
bundle.

Example 4.7 (Möbius Strip). Consider the vector bundle M = I × R/ ∼ where the equivalence
relation ∼ relates every point to itself with the additional relation (0, v) ∼ (1,−v). This definition
provides an easy choice of projection map p : M → S1 through the map p : (x, v) 7→ x. Note that
I/ ∼ is isomorphic to S1 and so this bundle has the base space of S1 with one dimensional vector
spaces. However, the difference is the subtle “−” in the equivalence relation, which gives a twist to
the topological space. In fact, the bundle M gives a Möbius band.

It still must be explicitly shown that M is indeed a vector bundle. First, note that for each x ∈ S1,
the construction gives p−1(x) ∼= R and R is indeed a vector space. For the local triviality condition,
fix any point x ∈ S1. So long as x 6= 0, there is an open set U ⊂ I containing x. In this case,
p−1(x) = U × R by definition giving immediate local triviality. In the case that x = 0, a specific
local trivialization must be constructed. That is, an isomorphism to the trivial bundle. In this case,
consider the open set U = (1/2, 1)∪[0, 1/2) together with the local trivialization ϕ : p−1(U)→ U×R
defined by ϕ : (x, v) 7→ (x, v) if ϕ ∈ [0, 1/2) and p : (x, v) 7→ (x,−v) otherwise. This is an indeed
continuous by the definition of the equivalence relation and this map acts as its own inverse, which
gives ϕ is an isomorphism. A visual for intuitively understanding that a Möbius band is locally
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trivial is given in Figure 2. In the figure, the point x ∈ S1 is represented by a green point, the open
set U ⊂ S1 containing x is magenta and the region p−1(U) is red.

Figure 2. Möbius Band is Locally Trivial

The dimension of a vector bundle refers to the dimension of the vector space placed over the base
space, so both the cylinder and the Möbius band are of dimension 1. Dimension 1 bundles are
referred to as line bundles. Note that so long as the base space is connected, the local triviality
condition forces all of the vector spaces in the bundle to be equivalent, ensuring the dimension is
well-defined. The following example constructs a bundle of dimension 2.

Example 4.8 (TS2). The tangent bundle to S2 is denoted TS2 and is defined as the set E ={
(x, v) ∈ S2 × R3 : 〈x, v〉 = 0

}
where the inner product is defined by using S2 ⊂ R3 to consider

elements of the sphere as vectors. This goes together with the natural projection map p : E → S2

defined by p : (x, v) 7→ x.

To show that TS2 is indeed a vector bundle, note that the condition 〈x, v〉 = 0 ensures that
p−1(x) will form a vector subspace for each x ∈ X. For the local triviality condition, fix any point
x ∈ S2 and consider the open hemisphere U ⊂ S1 centered at x. Now define the local trivialization
ϕ : p−1(U)→ U × R2 by ϕ : (y, v) 7→ (y,projp−1(x)(v)) where projp−1(x)(v) denotes the orthogonal

projection of v onto the vector space p−1(x). This is a continuous map with isomorphisms between
the corresponding fibers, thus Lemma 4.6 promises that this is indeed an isomorphism to the trivial
bundle.

Example 4.9 (NS2). The normal bundle to S2 is denoted NS2 and is defined as the set E ={
(x, v) ∈ S2 × R3 : v ∈ Span(x)

}
where again x can be considered as a vector by S2 ⊂ R3. The

bundle E comes equipped with the projection map p : E → S2 such that p : (x, v) 7→ x.

The verification for local triviality uses a similar construction as the tangent bundle. Again con-
sider an open hemisphere U for each x ∈ S2 and define ϕ : p−1(U) → U × R by ϕ : (y, v) 7→
(y,projp−1(x)(v)), and Lemma 4.6 gives that this is an isomorphism.
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Figure 3. Tangent Vector Space at one point of S2

Recall that the real projective line considers equivalence classes in R2 \ {(0, 0)} where each class
represents a line through the origin that does not contain the origin. Taking the line that each point
in RP 1 represents to be the fiber over that point is a natural construction of a vector bundle. This
construction extends to any projective space RPn and the resulting bundle is called the canonical
line bundle over the space. The case of RP 1 is given in more detail below.

Example 4.10 (Canonical Line Bundle over RP 1). Let RP 1 be the real projective line and define
a vector bundle p : E → RP 1 by

E =
{

([x], v) ∈ RP 1 × R2 : v ∈ Span(x)
}

together with the natural projection map p : ([x], v) 7→ [x]. The local trivialization is again given
by an orthogonal projection.

Vector bundles need not be over a real vector space Rn. In fact, taking the vector space to be a
complex vector space Cn provides some pleasant patterns. Note the following example of a bundle
that takes the vector space C.

Example 4.11 (Canonical Line Bundle over CP 1). The canonical line bundle over CP 1 is the
bundle p : H → CP 1 such that

H =
{

([x], v) ∈ CP 1 × C2 : v ∈ Span(x)
}

together with the natural projection map. The local trivialization is constructed by an orthogonal
projection.

The canonical line bundle plays a central role in K-theory; it is the isomorphism CP 1 ≈ S2 together
with this particular that will give K-theory pleasant patterns on spheres.

2. Direct Sum and Tensor Product on Vector Bundles

Again take the view of a vector bundle as a collection of vector spaces with some extra topological
properties. In fact, every point of a vector bundle E belongs to some fiber of the bundle, so the E
as a set is simply the disjoint union of only fibers. By taking this perspective, much of the structure
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of vector spaces extends to vector bundles. For instance, the fibers can be used to construct the
direct sum operation in the following way.

Definition 4.12 (Direct Sum of Vector Bundles). Let p1 : E1 → X and p2 : E2 → X be vector
bundles over X. Then, consider the disjoint unions of the direct sums of fibers

E1 ⊕ E2 =
⋃
x∈X

p−11 (x)⊕ p−12 (x)

together with the projection mapping p : E1 ⊕ E2 → X given by p : p−11 (x) ⊕ p−12 (x) 7→ x. Then,
p : E1⊕E2 → X when given a natural topology forms a vector bundle over X called the direct sum
of E1 and E2.

Of course, a vector bundle has more structure than simply a union of vector spaces; in particular,
vector bundles must be given a topology and must satisfy the local triviality condition. The
verifications at the end of this chapter provide the specific details of this “natural topology” referred
to in the above definition along with this necessary proof of local triviality, but these verifications
all work out. Because a vector bundle is built out of fibers, vector space properties such as the
direct sum carry over naturally to vector bundles and the extra properties typically “all work out”.

In this construction, consider some x ∈ X and let v1 ∈ p−11 (x) and v2 ∈ p−12 (x) be elements of both
fibers. Then, taking the direct sum of these vector spaces, these two vectors can be identified with
v1 ⊕ v2, which can also be thought of as simply (v1, v2). Elements of the direct sum bundle can be
thought of as an ordered pair containing of elements of each original bundle.

A second similar construction by using the fibers is in the extension of the tensor product to vector
bundles.

Definition 4.13 (Tensor Product of Vector Bundles). Let p1 : E1 → X and p2 : E2 → X be vector
bundles over X. Then, consider the disjoint unions of all tensor products of the fibers

E1 ⊗ E2 =
⋃
x∈X

p−11 (x)⊗ p−12 (x)

together with the projection mapping p : E1 ⊗ E2 → X given by p : p−11 (x) ⊗ p−12 (x) 7→ x. Then,
p : E1 ⊗ E2 → X when given a natural topology forms a vector bundle over X called the tensor
product of E1 and E2.

Again, the specifics of the “natural topology” and the verification of natural triviality all work out
as explained in the verifications at the end of the chapter. The proof is identical to the proof for
direct sum. It is worth mentioning that this construction can be generalized to other operations on
vector spaces such as the dual and the exterior power, but these notes only require the direct sum
and the tensor product.

Because the tensor product and direct sum are defined on each fibers, the properties of direct sum
and tensor product on vector spaces carry over to analogous properties on vector bundles.

Claim 4.14. Listed below are properties of direct sum and tensor product over vector bundles.

(i) The direct sum between bundles is associative and commutative.
(ii) The trivial bundle of dimension 0 is an identity element for the direct sum. That is, E⊕ε0 = E.
(iii) The tensor product between bundles is associative and commutative.
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(iv) The trivial dimension of dimension 1 is an identity element for the tensor product. That is,
E ⊗ ε1 = E.

(v) The tensor product distributes over direct sum.

The proof verifying each of these properties must show an isomorphism between bundles. The full
proof is given at the end of the chapter, but the difficult part of is to show the claimed isomorphism
satisfies the continuity conditions. Luckily, however, continuity is a local property, meaning that it
suffices to verify continuity for an open cover of small neighborhoods. This strategy works well with
vector bundles because the local triviality condition promises that so long as the neighborhoods are
small enough, each neighborhood will be trivial. After this key observation, the rest of the proof
follows.

3. Pullback Bundles

The following construction addresses pullback bundles. In the next chapter of this story, all of
the arrows will suddenly point backwards as a contravariant functor emerges. The reason why the
arrows will point backwards is due to pullback bundles.

Consider two base spaces X and Y where X has a vector bundle structure p : E → X but Y ,
unfortunately, has no such structure. However, Y can be given a vector bundle q : F → Y by
stealing the structure of E through the association given by f . Specifically, assign the fiber over
each point y ∈ Y as an exact copy of the fiber over f(y).

Definition 4.15 (Pullback Bundle). Let f : X → Y be a mapping and p : E → X a bundle as
defined above. Then there exists a unique bundle f∗(p) : f∗(E)→ Y and a mapping h : f∗(E)→ E
such that h maps each fiber (f∗(p))−1(y) to the fiber p−1(f(y)) as a vector space isomorphism. This
bundle is called the pullback bundle and denoted f∗(p) : f∗(E)→ Y .

Y X

f∗(E) E

f

f∗(p)

h

p

Figure 4. Pullback Bundle Commutative Diagram

Again existence and uniqueness must be verified. Following [4, p. 18-19], the existence proof
considers the construction

F = {(y, e) ∈ Y × E : f(y) = p(e)}
which is worth particular attention, for many sources such as [1] use this construction as the
definition. It must be verified that F is both a vector bundle and that F satisfies the defining
property of the pullback. This requires defining a projection map q : F → Y by q : (y, e) 7→ e. The
vector space structure on each q−1(y) is defined by the vector space structure on p−1(f(y)) by

α(y, v) + β(y, w) = α(y, v + w)
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These definitions indeed make F into a valid vector bundle, and F indeed satisfies the defining
property of pullback by considering the mapping h : F → E defined by h : (y, e) 7→ e. Note that
the condition f(y) = p(e) in F is constructed exactly so that Figure 4 commutes.

(p ◦ h)((y, e)) = p(e) = f(y) = (f ◦ q)((y, e))

For uniqueness, assume that there is some bundle q′ : F ′ → Y with a map h′ : F ′ → E that satisfies
the universal property of pullback. But now consider the specific pullback F constructed in an
existence proof and the mapping ϕ : F ′ → F by ϕ : f 7→ (q′(f), h′(f)). By the properties of h′, this
mapping will act as a vector space isomorphism on each fibers, so Lemma 4.6 gives that F ′ ≈ F ,
giving uniqueness.

However, there is a detail of well-defined to address. When given a vector bundle p : E → X with
continuous functions f : X → Y and g : Y → Z, how is the bundle structure on X pulled back to
a bundle on Z? There are two options: (f ◦ g)∗(E) and f∗(g∗(E)). Luckily, the following claim
shows that the two options are isomorphic and gives more pleasant properties of the pullback.

Claim 4.16. Listed below are important properties of pullbacks.

(i) (f ◦ g)∗(E) ≈ g∗(f∗(E)) for any bundle E and continuous functions f and g.
(ii) Id∗(E) ≈ E for any vector bundle E over X and the identity mapping Id : X → X.
(iii) f∗(εn) ≈ εn for all continuous functions f and trivial bundles εn over the corresponding base

spaces.
(iv) f∗(E1 ⊕ E2) ≈ f∗(E1)⊕ f∗(E2) for all bundles E1 and E2 and continuous function f .
(v) f∗(E1 ⊗E2) ≈ f∗(E1)⊗ f∗(E2) with E1 and E2 vector bundles and f a continuous function.

A full verification for each of these properties is given at the end of the chapter, but the strategy is
to show isomorphism by demonstrating that the defining property of pullback is satisfied and then
appealing to uniqueness. Recall that a pullback bundle f∗(E) assigns a fiber to each point y in its
base space by stealing the structure of the fiber over f(y). However, if f collapsed the domain to
a single point, every point y will be assigned the same fiber, resulting in a trivial bundle as in the
following example.

Example 4.17. Take any bundle p : E → X together with the continuous function f : Y → X
between topological spaces that maps all of Y to a single point x0; that is, f : y 7→ x0. Note that
the pullback defines each fiber over a point y ∈ Y to steal the structure of f(y), so in this case
the pullback f∗(E) is given by the trivial bundle Y × p−1(x0). To formally verify this is the trivial
bundle, consider the mapping h : f∗(E) → E given by h : (y, v) 7→ (x0, v). This takes each fiber
over a point y ∈ Y to the fiber over x0 by the identity mapping, for they are defined to be the
same vector space. The identity mapping is indeed a vector space isomorphism over the fibers, so
h fulfills the defining property of pullback.

Example 4.18 (Restriction). Take any vector bundle p : E → X and a subspace A ⊂ X, which
comes with the inclusion map i : A→ X. Then, the pullback i∗(E) is given by the restriction of E
to A, which is simply the space notated by p−1(A) previously. To verify this, consider the mapping
h : p−1(A) → E defined by an inclusion h : e 7→ e, for p−1(A) is a subspace of E. This identity
mapping indeed acts as a vector space isomorphism over the fibers, so the restriction p−1(A) fulfills
the defining property of the pullback.
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Note that given a vector bundle p : E → X, a function f from Y to X is necessary to induce a
pullback bundle f∗(E) over Y ; not the other way around. The function must point this direction
in order for f∗(E) to effectively steal the structure of E. A function f ′ : X → Y would be rather
useless, for this function may associate each point of the base space Y to multiple points in the
base space X or non at all. However, given the function f : Y → X, each point in Y is mapped to
a single point in X and so the structure of E can be effectively stolen. This fact — that a function
induces a vector bundle in the opposite direction — is half way to defining a contravariant functor.

4. Necessary Results on Vector Bundles

Note that the properties of direct sum and tensor product on vector bundles does not include a
notion of additive inverse. The following result is crucial to eventually getting the desired additive
inverse property.

Claim 4.19. For every bundle E over a compact Hausdorff space X, there exists a bundle E′ over
X such that E ⊕ E′ is trivial.

A (lengthy) full proof of the claim is given in [4], but the idea is as follows. Given the bundle
p : E → X over a compact Hausdorff space, a huge trivial bundle T is constructed by using a
topology theorem1 that follows from the compact Hausdorff condition. The trivial bundle T is
built exactly such that there is a convenient isomorphism from E to a sub-bundle E0 in the huge
trivial bundle. Another topology tool2 allows the extension of an inner product to vector bundles,
which then gives a Gran-Schmidt orthogonalization process on vector bundles. The orthogonal
complement of each fiber in E0 gives a vector bundle E⊥0 such that E0 ⊕ E⊥0 = T and the desired
conclusion follows from E ∼= E0.

Example 4.20. For an example of the above theorem, consider the tangent bundle to S2, denoted
TS2, which satisfies TS2 ⊕NS2 trivial. To see this, consider the space S2 as embedded inside R3.
Then elements of TSn can be expressed (x, v) ∈ S2 × R3 and similarly, elements of NS2 are given
by (x, n) ∈ S2×R3. Further, at a fixed point x, all vectors v in the tangent fiber will be orthogonal
to the vectors n in the normal fiber by the definition of the bundles. Then elements of the direct
sum TS2 ⊕NS2 can be expressed by (x, v⊕ n) or simply (x, v, n). Then consider the isomorphism
ϕ : TS2 ⊕NS2 → S2 × R3 given by the isomorphism.

ϕ : (x, v, n) 7→ (x, v + n)

The above mapping an isomorphism follows from the above continuous and a linear bijection. The
inverse map to the above can be constructed by taking the projection of the vector component onto
the normal and tangent subspaces, which is again continuous giving isomorphism.

Homotopy relationships are closely related to the structure of a vector bundle. Consider the fol-
lowing result, for example.

Claim 4.21. Take a vector bundle p : E → X. If the base space X is contractible, then the bundle
E is trivial.

1Urysohn’s Lemma
2Partition of Unity
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Any vector bundle over a point must be trivial, and a contratibe space many properties with a
point. A full proof of this result is given in [1, p. 18].

Claim 4.22. If H is the canonical line bundle over CP 1, then (H ⊗H)⊕ 1 ≈ H ⊕H.

The justification for this theorem, following [4, p. 24], begins with CP 1 ≈ S2 as discussed in
Example 3.13, revealing that the canonical line bundle H can be seen as a bundle over S2. The
verification for Claim 4.22 uses the tool of clutching functions, which constructs vector bundles on
spheres The idea of clutching function is that the sphere S2 is made from joining two disks D+

2

and D−2 , corresponding to two hemispheres. Next, consider the restriction of the bundle H over
the disks D+

2 and D−2 and note that disks are contractible and thus the restrictions will reduce to
the trivial bundle by Claim 4.21. The bundle H can then be rebuilt by considering the two trivial
bundles D+

2 × C and D−2 × C together with a description of how the two halves fit together. This
description is formally given by a mapping from f : S1 → GL1(C), where S1 ⊂ S2 is where the
two hemispheres meet. The bundle H is then reconstructed by identifying (x, v) with (x, f(x)v)
for some clutching function f . In the case of the canonical line bundle, f = (z). An important
property of clutching functions is that if bundle Ef is described by clutching function f and bundle
Eg is described by clutching function g and f is homotopic to g, then Ef ≈ Eg.

Now recall the definition of direct sum on vector bundles to construct the clutching function f
on H ⊕ H and g on (H ⊗ H) ⊕ 1 where f, g : S1 → GL2(C). In particular, f must satisfy
f(z)(v ⊕ v) = (z)(v) ⊕ (z)(v) and g must satisfy g(z)((v ⊗ v) ⊕ 1) = (z)(v) ⊗ (z)(v) ⊕ 1. These
clutching functions must then be as follows.

f : z 7→
(
z 0
0 z

)
and g : z 7→

(
z2 0
0 1

)
However, note that f(z) and g(z) only differ by scaling. In other words, there is a homotopy
H : S1 × I → GL2(C), which is explicitly given by H : (z, x) 7→ z−xf(z). The homotopy f ' g
then gives H ⊕H ≈ (H ⊗H)⊕ 1.

5. Verifications

5.1. Direct Sum and Tensor Product Verifications. It must be verified that the direct
sum has a natural topology that indeed makes it a vector bundle.

Proof. Take vector bundles p1 : E1 → X and p2 : E2 → X and recall that the direct sum on
bundles as a set is given by the disjoint union of direct sums on fibers

E1 ⊕ E2 =
⋃
x∈X

p−11 (x)⊕ p−12 (x).

This set is paired with with the projection p : E1 ⊕ E2 → X given by p : p−11 (x)⊕ p−12 (x) 7→ x.

The topology on E1 ⊕ E2 is defined in this paragraph. For each x ∈ X, the definition of vector
bundle promises an open set U containing x over which both E1 and E2 are trivial. This provides
trivializations t1 : p−11 (U)→ U × V1 and t2 : p−12 (U)→ U × V2 for vector spaces V1 and V2. Next,
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define the map t1 ⊕ t2 : p−11 (U)⊕ p−12 (U)→ U × (V1 ⊕ V2) as follows.

t1 ⊕ t2 : p−11 (x)⊕ p−12 (x) 7→ t1(p−11 (x))⊕ t2(p−12 (x))

Then, the topology on p−11 (U)⊕ p−12 (U) is defined by requiring the map t1⊕ t2 to be a homeomor-
phism. By letting x vary, this defines a topology over all of E1 ⊕E2. It must be verified, however,
that this topology is well-defined.

Before the proof of well-defined, observe how this choice of topology gives that E1 ⊕E2 is a vector
bundle. Firstly, this choice equips each fiber p−11 (x)⊕p−12 (x) with the typical topology of the direct
sum of vector spaces. This ensures that the projection map p : E1 ⊕ E2 → X is continuous. Next,
the local triviality condition must be verified. Luckily the topology is built exactly so that t1 ⊕ t2
is a trivialization. For any x ∈ X, the mapping t1 ⊕ t2 defined on the appropriate U as described
above satisfies all the conditions of a vector bundle homomorphism. Further, the defining condition
that t1 ⊕ t2 is a homeomorphism promises a continuous inverse and so t1 ⊕ t2 is an isomorphism of
vector bundles.

It only remains to show that the topology on E1⊕E2 is well-defined. In particular, it must be shown
that the topology is independent of the choice of trivializations over a single open set U and that the
open sets induce the same topology over their intersection. So, for x ∈ X and corresponding U ⊂ X,
consider two trivializations for each bundle: t1, t

′
1 : E1 7→ U and t2, t

′
2 : E1 7→ U . Because each

trivialization gives an isomorphism to the trivial bundle, the composition t−11 ◦t′1 : p−1(U)→ p−1(U)
is an isomorphism and similarly t−12 ◦ t′2 : p−1(U)→ p−1(U) is an isomorphism. Then composition
t′1 ◦ t−11 is an isomorphism on U × V1 and similarly t′2 ◦ t−12 is an isomorphism on U × V2. It follows
that the composition (t′1 ⊕ t′2) ◦ (t1 ⊕ t2)−1 is an isomorphism on U × (V1 ⊗ V2), which implies that
the choices (t1 ⊕ t2) and (t′1 ⊕ t′2) supply the same topology.

Finally, consider a separate set of open set U ′ ⊂ X. Then, taking the restrictions of the bundles
p−1(U) and p−1(U ′) over the intersection U ∩ U ′ would only differ in the trivializations, which
induce the same topology as shown in the previous paragraph. �

In the above argument, the only part that appeals to the direct sum operation itself is the implicit
assumption that the mapping (v, w) 7→ v⊕w is continuous. This is also true for the tensor product,
so a simple substitution of “⊗” in place of “⊕” in the above proof provides the needed verification
for tensor product.

Proof of Claim 4.14. Verifying each claim requires establishing an isomorphism ϕ over two
bundles, say p : E → X and q : F → X. The approach will be to establish a vector space
isomorphism between the fibers, which gives necessary properties of vector bundle isomorphism
except for continuity and continuity of inverse. To deal with the continuity conditions, note that
continuity is a local condition. Thus it suffices to show that for every x ∈ X, there is an open
neighborhood U such that the restricted function ϕ : p−1(U) → q−1(U) is continuous in both
directions.

(i) For associativity of the direct product, consider vector bundles E1, E2, E3 over a base space
X with corresponding projection maps p1, p2, and p3. An isomorphism ϕ : (E1⊕E2)⊕E3 →
E1 ⊕ (E2 ⊕ E3) must be constructed. Let ϕ be the linear bijective function defined on the
fibers by

ϕ : (p−11 (x)⊕ p−12 (x))⊕ p−13 (x) 7→ p−11 (x)⊕ (p−12 (x)⊕ p−13 (x))
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For the continuity conditions, fix a point x ∈ X. Then, choose an open set U ⊂ X small
enough such that the local triviality conditions are satisfied by both direct sum bundles.
Then, noting the vector space isomorphism (V1⊕V2)⊕V3 ∼= V1⊕ (V2⊕V3), continuity in both
directions is given by the following composition of isomorphisms

(p−11 (U)⊕ p−12 (U))⊕ p−13 (U)→ U × (V1 ⊕ V2)⊕ V3
→ U × V1 ⊕ (V2 ⊕ V3)→ p−11 (U)⊕ (p−12 (U)⊕ p−13 (U))

The proof for commutativity follows in a near identical way. The difference being that
an isomorphism ϕ : E1 ⊕ E2 → E2 ⊕ E1 is considered with the mapping between fibers
ϕ : p−11 (x)⊕ p−12 (x) 7→ p−12 (x)⊕ p−11 (x) and the vector space isomorphism V1 ⊕ V2 ∼= V2 ⊕ V1
is considered instead.

(ii) Verifying that ε0 is the identity element under direct sum requires establishing an isomorphism
ϕ : E ⊕ ε0 → E. This follows in the same way as the previous claims, but uses the mapping
of fibers ϕ : p−1(x)⊕ {0} 7→ p−1(x) and uses the vector space isomorphism V ⊕ {0} ∼= V .

(iii) The proofs for associativity and commutativity of the tensor product is given by a substitution
of “⊗” for “⊕” in the corresponding direct sum proofs.

(iv) The proof that ε1 acts as an identity element over the tensor product follows similarly to the
identity proof over direct sum. The difference being that here an isomorphism ϕ : E⊗ε1 → E
is established by the mapping of fibers ϕ : p−1(x) ⊗ V 1 7→ p−1(x) where V 1 represents a
one dimensional vector space. This proof additionally uses the vector space isomorphism
V ⊕ V 1 ∼= V .

(v) Finally, the proof for distributivity establishes a vector space isomorphism ϕ : E1⊗(E2⊕E3)→
(E1 ⊗ E2)⊕ (E1 ⊗ E3) given by the linear bijection on the fibers

ϕ : p−11 (x)⊗ (p−12 (x))⊕ p−13 (x)) 7→ p−11 (x)⊗ p−12 (x)⊕ p−11 (x)⊗ p−13 (x)

and later uses the isomorphism on vector spaces V1 ⊗ (V2 ⊕ V3) ∼= (V1 ⊗ V2)⊕ (V1 ⊗ V3).

�

5.2. Pullback Bundle Verifications.

Proof of Claim 4.16. The strategy for proving each of the following isomorphisms is to take
advantage of the uniqueness property. If it can be shown that one side of the isomorphism satisfies
the defining property of pullback for the other side, then they must be isomorphic by uniqueness.

(i) For topological spaces X, Y , Z let g : Z → Y and f : Y → X be continuous functions and
let p : E → X be a vector bundle. By definition, the bundles f∗(E) and g∗(f∗(E)) come
equipped with maps hg : g∗(f∗(E)) → f∗(E) and hf : f∗(E) → E that isomorphically map
fibers to corresponding fibers. Then, the composition hf ◦hg : g∗(f∗(E))→ E isomorphically
maps fibers to corresponding fibers. Further, the bundle g∗(f∗(E)) comes equipped with
a projection mapping r into the base space Z. Thus, the triple g∗(f∗(E)), hf ◦ hg, and r
satisfy the defining characteristics of the pullback bundle (f ◦ g)∗(E), giving isomorphism by
uniqueness.

(ii) Take the mapping Id : X → X for a topological space X with a bundle p : E → X. Then, the
bundle E itself with the identity mapping Id : E → E isomorphically maps fibers to fibers and
comes equipped with the projection mapping p to X. Then, the triple E, Id : E → E, and
p satisfy the defining characteristics of the pullback Id∗(E) which promises the isomorphism
E ∼= Id∗(E) by uniqueness.
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(iii) Let f : Y → X be a continuous function between topological spaces and consider the trivial
bundle p : X × V → X over X with the regular projection p. Then, consider the trivial
bundle over q : Y × V → Y over Y with the regular projection q. Then, the mapping
h : Y × V → X × V given by h : (y, v) 7→ (f(y), v) gives the identity mapping over each fiber
and is thus a linear isomorphism of the fibers. Thus, the triple Y × V , h, and q satisfies the
defining properties of f∗(X × V ) and thus uniqueness promises an isomorphisms between the
trivial bundles Y × V ∼= f∗(X × V ). Note that the trivial pullback is over the same vector
space.

(iv) Next, take f : Y → X to be a continuous function between topological spaces. Further, let
p1 : E1 → X and p2 : E2 → X be vector bundles. The pullbacks f∗(E1) and f∗(E2) then
come with mappings h1 : f∗(E1) → E1 and h2 : f∗(E2) → E2 that are isomorphisms on the
fibers. Then, the direct sum of the pullbacks has a mapping h : f∗(E1)⊕ f∗(E2)→ E1 ⊕ E2

defined on the fibers by h : p−11 (x) ⊕ p−12 (x) 7→ h1(p−11 (x)) ⊕ h2(p−12 (x)) which is also an
isomorphism on the fibers. Additionally note that the direct sum comes equipped with a
projection mapping p onto Y . Thus the triple f∗(E1)⊕ f∗(E2), h, and p satisfy the defining
properties of the pullback f∗(E1⊕E2) giving the isomorphism f∗(E1)⊕f∗(E2) ∼= f∗(E1⊕E2)
by uniqueness.

(v) The proof for the distributivity of pullback over tensor product is identical to preceding such
proof for direct sum, differing only by replacing each “⊕” with “⊗”.

�





CHAPTER 5

The Definition of K-Theory

K-Theory is a functor from the category of topological spaces to the category of rings. Topological
spaces are messy, making it difficult to understand properties about topological spaces and homo-
morphisms between topological spaces. However, groups and rings are simple algebraic objects with
much structure — an easier object to analyze.

The K-theory functor first considers all possible vector bundles over a topological space. Looking
at every possible bundle is too much information, but it turns out that after simplifying the set to
equivalence classes of vector bundles, a ring structure emerges.

There are two veins of K-theory; the difference is in the equivalence classes used to reduce the set
of vector bundles. First, there is the K-theory of a topological space X, denoted K(X). In this
case, the equivalence classes have a natural semiring structure and the ring is defined through the

ring extension. Secondly, there is the reduced K-theory of a topological space X, denoted K̃(X),
which has bigger equivalence classes. In reduced K-theory, the equivalence classes themselves can
be made directly into a ring. In both K-theory and reduced K-theory, the functor is contravariant.

1. The K-Theory Functor K

K-theory aims to construct a ring on the set of vector bundles by making use of the direct sum
⊕ and the tensor product ⊗ operations. However, this will not give a notion of additive inverses,
providing only a semiring. As seen in Chapter 2, a commutative semiring has a unique extension
if there is an additive cancellation property. Such an additive cancellation property would means
that E1 ⊕ F ≈ E2 ⊕ F would imply E1 ≈ E2, which is not necessarily the case. However, applying
Claim 4.19 brings us closer to an additive cancellation property by taking the promised bundle F ′

such that F ⊕ F ′ is trivial as seen in the following computation.

E1 ⊕ F ≈ E2 ⊕ F =⇒ E1 ⊕ (F ⊕ F ′) ≈ E2 ⊕ (F ⊕ F ′) =⇒ E1 ⊕ εn ≈ E2 ⊕ εn

This computation motivates the following equivalence relation, which will place E1 and E2 inside
the same equivalence class, ultimately giving the additive cancellation property.

Definition 5.1 (Stably Isomorphic). Define the equivalence relation ≈s on vector bundles over the
same base space such that for bundles E1 and E2, E1 ≈s E2 if E1⊕ εn ≈ E2⊕ εn for some n where
εn denotes the n dimensional trivial bundle. Here, E1 and E2 are said to be stably isomorphic.

This equivalence relation gives a natural semiring structure on the equivalence classes.

47



48 5. THE DEFINITION OF K-THEORY

Claim 5.2. Take compact Hausdorff base space X. The set of all stably isomorphic equivalence
classes over the vector bundles on X forms a commutative semiring with cancellation when taking
the direct sum ⊕ as the additive operation and the tensor product ⊗ as the multiplicative operation.
This semiring is denoted J(X).

Proving the above claim takes some work, but the full proof is given in Section 4.1 of this chapter.
Most of the proof is routine verification, but getting the cancellation property and verifying that
multiplication is well-defined appeals to Claim 4.19, which is where the compact Hausdorff condition
is used. Because this semiring is commutative with the cancellation property, it is most convenient
to consider the unique commutative ring promised through ring completion.

Definition 5.3 (K-Theory of a Topological Object). Take compact Hausdorff base space X and
let J(X) denote the commutative semiring with cancellation as described in claim. Then, the ring
completion of J(X) is the K-theory of X and is denoted K(X).

To get a feel for this definition, consider the following computations of K-theory on simple topolog-
ical spaces.

Example 5.4 (K-Theory of a point). Consider as a topological space a single point {x0}. The
only choice of vector bundles on {x0} are the trivial bundles of each dimension. That is, the set{
ε0, ε1, ε2, . . .

}
. No two trivial bundles will be in the same stable isomorphism class, giving the

set of equivalence classes
{

[ε0], [ε1], [ε2], . . .
}

, which is isomorphic to the semiring N. So, the ring
K({x0}) is the ring completion of N. That is, K({x0}) ∼= Z.

Example 5.5 (K-Theory of n points). Consider the topological space of n disconnected points
{x0, x2, . . . , xn−1}. Then, each point can have a fiber of any dimension, and the choice of fibers is
independent of one another. This gives that the set of all vector bundles is isomorphic to the set
Nn. Then, any arbitrary vector bundle over the space can be denoted (εk0 , εk1 , . . . , εkn−1) where the
first element in the tuple represents the bundle over the first disconnected point, the second element
represents the bundle over the second, and so on. The equivalence classes can then be represented
[(εk0 , εk1 , . . . , εkn−1)], and in this case every vector bundle is its own equivalence class, and so this
is isomorphic to the semiring Nn, which has ring completion Zn. Thus K({x0, x1, . . . , xn−1}) ∼= Zn.

However, defining the K-theory on topological objects only brings the operation half way to being
a functor. Functors map objects to objects but also morphisms to morphism. Just as K-theory
brings topological spaces to rings, K-theory must bring continuous functions between topological
spaces to homomorphisms of rings. In this case, K-theory is a contravariant functor and so reverses
the direction of the mapping.

Claim 5.6. Take topological spaces X and Y with a continuous function f : X → Y . Let J(X)
denote the semiring as described in claim 5.2 and let K(Y ) be the K-theory of Y . Further, define
the function J(f) : J(X)→ K(Y ) defined on an equivalence class [E] ∈ J(X) by

J(f) : [E] 7→ [f∗(E)]

where f∗ denotes the pullback. Then, J(f) is a well-defined homomorphisms of semirings.

Verifying the above follows easily from the properties of pullback given in Claim 4.16. The full
proof is given in section 4.2. Note that this is the point where the contravariant property emerges.
Because the elements of the semiring is equivalence classes of vector bundles, a homomorphism
consists of mappings from one vector bundle to another vector bundle. This is best done through
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the induced vector bundle by the pullback which, as discussed previously, must be done in the
reverse direction.

Definition 5.7 (K-Theory of a Topological Morphism). For compact Hausdorff spaces X and Y
with a continuous function f : X → Y , let J(f) : J(X) → J(Y ) denote the homomorphism of
semirings as described in Claim 5.6. Further, let iX : J(X) → K(X) and iY : J(Y ) → K(Y )
denote ring completions. Then, the K-theory of f is the unique homomorphism of rings K(f) :
K(X) → K(Y ) such that the following diagram commutes as promised by the universal property.
That is, that K(f) ◦ iX = iY ◦ J(f).

J(Y ) J(X)

K(Y ) K(X)

iY

J(f)

iX
iY ◦J(f)

K(f)

Figure 1. Definition of K(f) through Universal Property

And that is the definition of K-theory! Figure 2 denotes a diagram of the K-theory functor. Next,
observe how the K-theory functor on the following examples of concrete topological spaces.

Example 5.8. This example examines the K-theory of the inclusion from the space with one point
to the space with n points. So take the topological space of n points {x0, x1, . . . , xn−1} and consider
the subspace {x0} ⊂ {x0, . . . , xn−1}. Then, let i : {x0} → {x0, . . . , xn−1} be the inclusion map.

Recall that the equivalence classes of vector bundles over x0 can be represented [εn] and the equiv-
alence classes over {x0, x1, . . . , xn−1} can be represented [(εk0 , εk1 , . . . , εkn−1)]. Then, by definition
the function J(i) : J({x0, . . . , xn−1})→ J({x0}) is given by

J(i) : [(εk0 , εk1 , . . . , εkn−1)] 7→ [i∗(εk0 , εk1 , . . . , εkn−1)]

Recall that the pullback of the inclusion is simply the restriction to the space in the domain. In
this case, that is the restriction to the point x0 and so function J(i) is

J(i) : [(εk0 , εk1 , . . . , εkn−1)] 7→ [εk0 ]

Now step away from the vector bundles themselves and let J(i) denote the semiring homomorphism
J(i) : Nn → N given by J(i) : (k0, k1, . . . , kn−1) 7→ k0. Finally, consider the ring completions Zn

Y X

K(Y ) K(X)

f

K K

K(f)

Figure 2. The K-Theory Functor
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{x0} {x0, . . . , xn−1}

N Nn

Z Zn

i

J(i)

K(i)

k0←[(k0,...,kn−1)

Figure 3. K-Theory of a Morphism Example

and Z. The universal property then promises a unique ring homomorphism K(i) : Zn → Z. In this
case, the ring homomorphism is given by K(i) : (k0, k1, . . . , kn−1) 7→ k0, but this time, each ki can
take on the value of any integer. See figure 3 for a visual of this construction.

2. The Reduced K-Theory Functor K̃

There is another closely related vein of K-theory called reduced K-theory. Reduced K-theory is a is
a functor from the category of topological spaces to the category of abelian groups. However, with
as assumption discussed later, this functor can be extended to the category of commutative rings
(but not necessarily with identity). Reduced K-theory uses a stronger equivalence relation, which
gives fewer equivalence classes.

Definition 5.9. Define the equivalence relation ∼ on vector bundles E1 and E2 over the same base
space such that E1 ∼ E2 if E1 ⊕ εn ≈ E2 ⊕ εm for some n and m.

Then, this equivalence class immediately gives rise to the desired group.

Definition 5.10. Take a compact Hausdorff topological space X and let K̃(X) denote the set of
all equivalence classes under the relation ∼ as described in definition 5.9. Then, define the group
operation by the direct sum ⊕ operation on the elements. This forms a well-defined abelian group
and is called the reduded K-theory of X.

The verification that K̃(X) indeed forms a well-defined group is straight-forward, but it is worth
noting that the existence of inverses uses Claim 4.19, which requires the compact Hausdorff condi-
tion.

Consider some simple computation of reduced K-theory.

Example 5.11 (Reduced K-Theory of a Point). Again as a topological space a single point {x0}.
The only choice of vector bundles on {x0} is the set trivial bundles

{
ε0, ε1, ε2, . . .

}
. In this case,

however, each trivial bundle is in the same isomorphism class, so the set of equivalence classes has

only the identity element ε0. So, the reduced K-theory of a point K̃({x0}) is the trivial group.
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It must still be addressed how reduced K-theory maps continuous topological maps to group mor-
phisms, which again makes use of the pullback.

Definition 5.12 (Reduced K-Theory of a Topological Morphism). Let f : Y → X denote a

continuous function between topological spaces. Then the induced mapping K̃(f) : K̃(X)→ K̃(Y )
is defined by

K̃(f) : [E] 7→ [f∗(E)]

where the equivalence classes are with respect to the relation ∼ as in definition 5.9.

The verification for well-defined is identical to that for unreduced K-theory. With well-defined, the

properties of pullback Id∗(E) ≈ E and (f ◦ g)∗(E) ≈ g∗(f∗(E)) immediately give that K̃ obeys the
rules for functors.

Now consider the following example, which demonstrates an important relationship between the

functors K and K̃.

Example 5.13 (Reduced K-Theory of n points). Consider the topological space of n disconnected
points {x0, x2, . . . , xn−1}. Again, each fiber is free to have a vector space of any dimension, so any
arbitrary vector bundle over the space can be denoted (εk0 , εk1 , . . . , εkn−1). The equivalence classes
under ∼ are then represented [(εk0 , εk1 , . . . , εkn−1)]∼. In this case, every equivalence class has more
than one element. In particular, (εk0 , εk1 , . . . , εkn−1) ∼ (εl0 , εl1 , . . . , εln−1) if there exists bundles εk

and εl such that

(εk0 ⊕ εk, εk1 ⊕ εk, . . . , εkn−1 ⊕ εk) ≈ (εl0 ⊕ εl, εl1 ⊕ εl, . . . , εln−1 ⊕ εk)

By simply ditching the “ε” symbol, there is an isomorphism to equivalence classes of n tuples of
integers [(k0, k1, . . . , kn−1)] where (k0, k1, . . . , kn−1) ∼ (l0, l1, . . . , ln−1) if there exists integers k and
l such that

(k0 + k, k1 + k, . . . , kn−1 + k) = (l0 + l, l1 + l, . . . , ln−1 + l)

Additionally, the group operation is element wise addition as is taken from the representation with
“ε”. Note that all of the k’s and l’s are allowed to be any integer but they originally represented
the dimension of a trivial bundle, so it seems they should only be nonnegative integers. However,
expanding the elements to integers does not change the group, for every new element containing a
negative integer will land in a preexisting equivalence class.

And so, elements in reduced K-theory are of the form of equivalence classes [(k0, k1, . . . , kn−1)] with
the relation as defined earlier.

However, this does not clear up what this reduced K-theory is isomorphic to. The bottom line is
that the reduced K-theory of n points is isomorphic to the group Zn−1. There are a few ways to
see this, but the most educational is with the following.

Fix the point x0 ∈ {x0, . . . , xn−1} and consider the K-theory groupsK({x0, . . . , xn−1}) andK({x0}).
The goal will be to construct a homomorphism ϕ : K̃({x0, . . . , xn−1}) → K({x0, . . . , xn−1})
and use ϕ with the mapping K(i) : K({x0, . . . , xn−1}) as defined previously. Overall, this will
give the chain of mappings as shown in figure 4. Additionally takes note of the isomorphisms
K({x0, . . . , xn−1}) ∼= Zn and K({x0}) ∼= Z.

Now, define ϕ on the discussed representations on the K-theory and reduced K-theory of n points
as follows.
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ϕ : [(k0, k1, . . . , kn−1)]→ (0, k1 − k0, . . . , kn−1 − k0)

The mapping ϕ is indeed a group homomorphism and now recall that K(i) is given by the following.

K(i) : (l0, l1, . . . , ln−1) 7→ l0

Make a two observations. Firstly, Im(ϕ) = Ker(K(i)). Secondly, ϕ is injective. Then ϕ injective

gives K̃({x0, . . . , xn−1}) ∼= Im(ϕ) which then gives the relationship

K̃({x0, . . . , xn−1}) ∼= Ker(K(i))

Lastly note that element of the kernel are of the form (0, l1, . . . , ln−1) for any choice of l’s, so the

kernel is isomorphic to Zn−1. Overall, this gives K̃({x0, . . . , xn−1}) ∼= Zn−1.

K̃({x0, . . . , xn−1}) K({x0, . . . , xn−1}) K({x0})
ϕ K(i)

Figure 4. Chain of Homomorphisms for n-points example

The above example found the reduced K-theory by demonstrating that K̃({x0, . . . , xn−1}) is iso-
morphic to Ker(K(i)) In fact, a relationship like this exists in general. For any topological space

X with point x0 ∈ X and inclusion i : x0 → X, the relationship K̃(X) ∼= Ker(K(i)) holds. The
proof of this uses tools developed in the next chapter, but the above example gives a taste of the
proof. A consequence of this, however, is that K(i) is a ring homomorphism, so Ker(K(i)) is an

ideal. Then K̃(X) is isomorphic to this ideal and thus can be given a multiplication. Thus, we can

consider K̃(X) to be a ring, but not necessarily with identity. The ring structure, however, does
depend on the point x0, thus to make the choice not arbitrary, X must be a pointed topological
space, which associates a pre-determined point x0 to the space. In symmetrical spaces such as the
torus and the sphere, every choice of point is equivalent, so this distinction is not always necessary.

The computed examples hint at another relationship between K-theory and reduced K-theory.

Note that for a point {x0}, K({x0}) ∼= Z and K̃({x0}) ∼= {0}. The computations for a collection of

points {x0, x1, . . . , xn−1} showed K({x0, x1, . . . , xn−1}) ∼= Zn and K̃({x0, x1, . . . , xn−1}) ∼= Zn−1.
Note that Z ∼= {0} ⊕ Z and more generally, Zn ∼= Zn−1 ⊕ Z. More generally, it is true that

K(X) ∼= K̃(X) ⊕ Z for any topological space X, but this proof again uses techniques of the
following chapter.

3. Simplifying the Notation

Reduced K-theory does not require any ring extension, so an element of some reduced K-theory

group K̃(X) is some equivalence class [E] with representative E. However, often the equivalence

class is dropped so an element of K̃(X) can be written as the bundle E. Embracing ring notation,
the sum of two bundles can be written by E1 +E2, but note that this addition is defined to be the
direct sum. The differences such of two bundles can be written E2−E1, the repeated addition of a
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bundle n times can be written n · E, and the additive identity, which represents the trivial bundle
of any dimension, can be denoted by 0.

However, now consider the elements of a non-reduced K-theory group K(X). Note that not every
element of K(X) is simply an equivalence class [E], for this only forms the semiring. Understanding
the form of the whole ring requires an examination of the construction of the ring completion. As
discussed previously, the ring is constructed as equivalence classes on two elements, understood
to represent a difference, just as the integers can be constructed from the nonnegative integers by
considering all differences n1 − n2. A good way to represent this equivalence class on two elements
is then by a subtraction sign between two equivalence classes [E1] − [E2]. Again, the equivalence
class notation can be dropped and so elements of K(X) can be represented in the notation E1−E2

for two bundles E1 and E2; however, in the special case that the bundle E2 is 0 in the difference,
the bundle E1 can be considered as an element of K(X) directly. Adding together two elements in
K(X) can be denoted by (E1 − F1) + (E2 − F2), which is equivalent to (E1 + E2) − (F1 + F2) as
expected. The additive identity element ε0 can be represented by 0, and the multiplicative identity
ε1 can be represented by 1. In fact, any trivial bundle εn can be represented by n.

Example 5.14. Take the base space to be CP 1 (which is isomorphic to S2), and let H denote the
canonical line bundle. Then the difference H − 1 can be considered an element of K(X), and of
course the identity 1 is an element of K(X). In fact, any repeated sum of these two elements is in
K(X) and can be represented by n+m(H − 1).

Given some continuous function f : X → Y , the induced homomorphism between K rings is written

K(f) : K(Y )→ K(X) and the induced homomorphism between K̃ rings is written K̃(f) : K̃(Y )→
K̃(X). However, decorating every function with K and K̃ becomes cramped when considering long
compositions of induced homomorphisms, so the notation is simplified to letting f∗ denote either

K(f) or K̃(f) depending on the context.

4. Verifications

4.1. Semiring Verification.

Proof. Take a compact Hausdorff space X. It must be verified that the set of stable isomor-
phism classes of vector bundles over X with operations defined by the direct sum ⊕ and the tensor
product ⊗ indeed satisfies all the properties of a commutative semiring with additive cancellation.

Before proceeding further, it must be verified that addition is well defined. So, take E1 ≈s E2

and F1 ≈s F2 to be vector bundles over X. Then, take nonnegative integers n and m such that
E1 ⊕ εn = E2 ⊕ εn and E1 ⊕ εm = E2 ⊕ εm as promised by definition. Then it follows that
E1 ⊕ F1 ≈s E2 ⊕ F2 by the following chain of equalities.

(E1 ⊕ F1)⊕ εn+m ≈ (E1 ⊕ εn)⊕ (F1 ⊕ εm) ≈ (E2 ⊕ εn)⊕ (F2 ⊕ εm) ≈ (E2 ⊕ F2)⊕ εn+m

Where the equivalence εn+m ≈ εn ⊕ εm was used.

With addition well defined, the associativity and commutativity of addition follows directly from the
associativity and commutativity of the direct sum on vector bundles. Further, the result E⊕ε0 ∼= E
for any vector bundle E stated in Claim 4.19 makes the equivalence class [ε0] the additive identity.
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The additive cancellation follows from Claim 4.19, which applies here by X compact Hausdorff.
Indeed, take bundles E, F , and S over X such that [E] + [S] = [F ] + [S]. First note that in
the case of S trivial, [E] = [F ] by definition. Otherwise, Claim 4.19 promises a bundle S′ such
that S ⊕ S′ is trivial. Adding [S′] to both sides reduces the expression to the first case with
[E] + [S ⊕ S′] = [F ] + [S ⊕ S′], giving [E] = [F ] as desired.

Before proceeding with any multiplicative verifications, it must be verified that the tensor product
⊗ gives a well defined multiplicative operation. So, again take E1 ≈s E2 and F1 ≈s F2 to be vector
bundles over X and nonnegative integers n and m such that E1⊕εn = E2⊕εn and E1⊕εm = E2⊕εm
as promised by definition. Next, define the bundle M by

M ≈ εn ⊗ (F1 ⊕ εm)⊕ εm ⊗ (E1 ⊕ εn) ≈ εn ⊗ (F2 ⊕ εm)⊕ εm ⊗ (E2 ⊕ εn)

Next, observe that M is constructed exactly so that the relation E1F1 ⊕M ≈ E2F2 ⊕M holds:

E1 ⊗ F1 ⊕M ≈ (E1 ⊕ εn)(F1 ⊕ εm)⊕ εnεm ≈ (E2 ⊕ εn)(F2 ⊕ εm)⊕ εnεm ≈ E2 ⊗ F2 ⊕M

So, take M ′ to be the bundle such that M ⊕M ′ is trivial as promised by Claim 4.19. Then, the
desired conclusion follows easily, giving that multiplication is well-defined.

E1 ⊗ F1 ⊕ (M ⊕M ′) = E2 ⊗ F2 ⊕ (M ⊕M ′)

With multiplication well defined, the associativity and commutativity of multiplication follows
directly from the associativity and commutativity of the tensor product on vector bundles. Similarly,
the distributivity of ⊗ over ⊕ in vector bundles gives that the defined multiplication distributes over
the defined addition. Finally, the result E⊗ ε1 ∼= E for any vector bundle E makes the equivalence
class [ε1] the multiplicative identity.

�

4.2. Homomorphism of Semirings Verification.

Proof. Let f : X → Y denote a continuous function between two compact Hausdorff spaces.

First it must be verified that J(f) is well-defined. Specifically, it must be shown that if [E1] = [E2],
then J(f)([E1]) = J(f)([E2]). That is, it must be shown that E1⊕ εn ≈ E2⊕ εn for some n implies
f∗(E1) ≈s f∗(E2). First, note the following application of the distributivity of pullback over direct
sum taken from Claim 4.16

f∗(E1)⊕ f∗(εn) ≈ f∗(E1 ⊕ εn) ≈ f∗(E1 ⊕ εn) ≈ f∗(E2)⊕ f∗(εn)

The result that the pullback of a trivial bundle is trivial combined with the above confirms f∗(E1) ≈s
f∗(E2) and so J(f) is well-defined.

With J(f) well-defined, verifying that J(f) is a semiring homomorphism follows easily from the
properties of pullback. Specifically, the distributivity of pullback over direct sum directly gives the
distributivity of J(f) over the defined addition. Similarly, the distributivity of pullback over tensor
product gives that J(f) distributes over the defined multiplication. Lastly, the property that f∗

maps the bundle ε1 over X to the bundle ε1 over Y implies that J(f) maps the multiplicative
identity to the multiplicative identity. �



4. VERIFICATIONS 55

4.3. K-Theory Functor Satisfies Contravariant Composition Law.

Proof. Let X, Y , and Z denote compact Hausdorff spaces and take f : X → Y and g : Y → Z
be continuous functions between them.

Further denote the semirings as defined in Claim 5.2 by J(X), J(Y ), and J(Z). Additionally, let
iX : J(X) → K(X), iY : J(Y ) → K(Y ), and iZ : J(Z) → K(Z) denote the ring completions
of each semiring as in definition 5.3. Further, let J(g) : J(Z) → J(Y ) and J(f) : J(Y ) → J(X)
denote the homomorphism of semirings as described in Claim 5.6. Finally, let the functions K(g) :
K(Z) → K(Y ), K(f) : K(Y ) → K(X), and K(f ◦ g) : K(Z) → K(X) be the unique functions
such that the following composition identities hold.

K(f) ◦ iX = iY ◦ J(f)

K(g) ◦ iY = iZ ◦ J(g)

K(f ◦ g) ◦ iX = iZ ◦ J(f ◦ g)

Additionally note that the relation J(f ◦ g) = J(g) ◦ J(f) follows from the discussed pullback
property (f ◦ g)∗(E) = g∗(f∗(E)) on a bundle E by the following computation on an element
[E] ∈ J(X).

J(f ◦ g)([E]) = [(f ◦ g)∗(E)] = [g∗(f∗(E))] = J(g)([f∗(E)]) = J(g)(J(f)([E]))

Substitutions of the preceding result together with the earlier composition identities allows for the
following result.

(K(g) ◦K(f)) ◦ iX = K(g) ◦ (iY ◦ J(f)) = (iZ ◦ J(Y )) ◦ J(f) = iZ ◦ J(f ◦ g)

And so K(f) ◦K(g) fulfills the defining property of K(f ◦ g). Because the function K(f ◦ g) is the
unique function fulfilling this property, it must be that K(f) ◦K(g) = K(f ◦ g). Figure 5 provides
a visual aid for this argument.

�

4.4. Reduced K-Theory forms Group.

Proof. First it must be verified that the direct sum operation ⊕ is well-defined on the equiv-
alence classes. So, consider vector bundles E1 ∼ E2 and F1 ∼ F2. Then let n1, m1, n2, m2

be the numbers such that E1 ⊕ εn1 ≈ E2 ⊕ εn2 and F1 ⊕ εm1 ≈ F2 ⊕ εm2 . It then follows that
E1 ⊕ F1 ≈ E2 ⊕ F2

(E1 ⊕ F1)⊕ (εn1+m1) ≈ (E1 ⊕ εn1)⊕ (F1 ⊕ εm1) ≈ (E2 ⊕ εn2)⊕ (F2 ⊕ εm2) ≈ (E1 ⊕ F1)⊕ (εn2+m2)

Where the above computation used εn+m ≈ εn ⊕ εm.

With the group operation well-defined, the associativity and commutativity of the operation follows
from direct sum associative and commutative on bundles.

The identity element in the group is given by the equivalence class [ε0], which is the set of all trivial
bundles. Indeed, [E] + [ε0] = [E ⊕ ε0] = [E].
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J(Z) J(X)
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J(f)
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K(f◦g)

K(g)

Figure 5. K-Theory Contravariant Composition Argument

It only remains to show the existence of inverses, which uses Claim 4.19. Then take any element [E]
and consider the promised bundle E′ such that E ⊕ E′ ≈ εn for some trivial bundle of dimension
n. Then, the element [E′] is the inverse element.

[E] + [E′] = [E ⊕ E′] = [εn] = [ε0]

�



CHAPTER 6

K-theory as a Cohomology Theory

The functors K and K̃ take the category of topological spaces to the category of rings. However,
K-theory requires extra patterns in the induced rings to be useful. The patterns of K-theory are

particularly bountiful when taking the base space to be a sphere; for instance, K̃(S2n) = K̃(S2)
for any n. These patterns allow for a space-subspace pair A ⊂ X to induce not just one ring, but
an infinite sequence of groups with pleasant patterns. The construction of such an infinite sequence
is a cohomology theory, which holds useful information about the original space-subspace pair. The
external product is an important structure of K-theory that is responsible for the connection to
spheres and the application in the following chapter.

1. Exact Sequences

The present goal is to construct an infinite sequence of groups with pleasant properties. The
following definition descries one such property.

Definition 6.1 (Short Exact Sequence). Let A, B, and C be abelian groups. Then let ψ : A→ B
be an injective homomorphism and let ϕ : B → C be a surjective homomorphism. Further suppose
that Kerϕ = Imψ. Then, the pair of homomorphisms ψ and ϕ are called exact and the sequence

A
ψ−→ B

ϕ−→ C is called a short exact sequence.

Note that an exact sequence does not need to be short. A sequence of arbitrary length can exact so
long as each adjacent pair of homomorphisms is exact. Of particular note is the long exact sequence,
which is a sequence of groups extending infinitely in both directions such that each adjacent pair
of homomorphism is exact.

. . . −→ A−2
α−→ A−1

β−→ A0 γ−→ A1 δ−→ A2 −→ . . .

The above definitions of exact sequences used groups, but replacing the word “groups” with “com-
mutative rings” or even with “modules” gives a definition of exact sequence for other categories.

Exact sequences are useful. Recall that the computation of the reduced K-theory for n points in
example 5.13 makes use of an exact sequence. The following result is partially responsible for why
exact sequences are so useful.

Lemma 6.2 (Splitting Lemma). Take a short exact sequence A
ψ−→ B

ϕ−→ C. Then, the following
three statements are equivalent:

(i) There exists a homomorphism α : B → A such that α ◦ ψ is the identity on A.
(ii) There exists a homomorphism β : C → B such that ϕ ◦ β is the identity on C.

57
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(iii) There is an isomorphism A⊕ C ∼= B.

Further note that the resulting homomorphisms α and β are exact.

A proof of this lemma is omitted from this document, but [2] a complete discussion on short exact
sequences.

Example 6.3. Let X be a compact Hausdorff pointed topological space, and let x0 ∈ X be the

particular point of the pointed topological space. Now define q∗ : K(X) → K̃(X) be given by the
completion of the mapping q∗ : (E1 − E2)→ (E1 − E2). Note that this is well-defined because the

equivalence classes of K̃(X) are only coarser equivalence classes of K(X). Next, let r : X → x0 take
every x ∈ X to the point x0, and let r∗ : K(X)→ K({x0}) represent the induced homomorphism
of K-rings. This gives the following short sequence of homomorphisms.

K({x0})
r∗−→ K(X)

q∗−→ K̃(X)

To see this is an exact sequence, note that any element of K({x0}) can be written as the difference
of two trivial bundles εn1−εn2 . But then r(εn1−εn2) will be given by the pullback r∗(εn1)−r∗(εn2),
which will simply be the element εn1 − εn2 over base space X. However, note that q∗ : (εn1 − εn2)
is equivalent to ε0 under the equivalence relation, and thus q∗r∗ = 0, confirming Ker(q∗) ⊂ Im(r∗).
For the other direction, note that the set of all trivial bundles is the equivalence class representing

0 in K̃(X), so an Ker(q∗) must be of the form εn1 − εn2 , which has preimage εn1 − εn2 in K({x0}),
thus Im(r∗) ⊂ Ker(q∗). Thus the sequence is indeed exact.

Now take the inclusion i : x0 → X and let i∗ : K(X)→ K({x0}) be the induced homomorphism of
K-rings. Note that r ◦ i is the identity on x0, so by the factorial properties of K, this gives i∗ ◦ r∗
is the identity on K({x0}), which fulfills statement (i) in Lemma 6.2. This then implies the other
two statements in the lemma, which correspond to the following two results.

Claim 6.4. Let i∗ and each term in the exact sequence K({x0})
r∗−→ K(X)

q∗−→ K̃(X) be defined

in Example 6.3. Then K(X) ∼= K̃(X)⊕K({x0}).

Proof. As shown in Example 6.3, the exact sequence in the claim satisfies property i of the

Splitting Lemma, which gives statement (iii), which directly gives K(X) ∼= K̃(X)⊕K({x0}), and

by Example 5.4, K({x0}) ∼= Z, so this can be rewritten K(X) ∼= K̃(X)⊕K({x0}). �

Claim 6.5. Let i∗ and each term in the sequence K({x0})
r∗−→ K(X)

q∗−→ K̃(X) be defined in

Example 6.3. Then K̃(X) ∼= Ker(i∗).

Proof. As shown in Example 6.3, the exact sequence in the claim satisfies property i of the

Splitting Lemma, which gives property (ii). Let j∗ : K̃(X) → K(X) be the promised homo-

morphism such that fulfills q∗ ◦ j∗ is the identity on K̃(X). This forces j∗ to be injective, so

Im(j∗) ∼= K̃(X). But by j∗ and i∗ exact, K̃(X) ∼= Ker(i∗). �

2. Exact Sequences in K-theory

However, exact sequences has a bigger role in K-theory than highlighting the relationship between
K-theory and reduced K-theory. Given a pair (X,A) of topological spaces with particular properties,
the K-theory functor induces a natural long exact sequence of groups with nice properties. This
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mapping from a pair (X,A) to a long exact sequence is the idea of cohomology. This begins with
the following short exact sequence construction.

Take the pair of compact Hausdorff topological spaces (X,A) with A ⊂ X to a closed, con-
tractible subset. Then consider the inclusion and quotient maps i : A → X with q : X → X/A.

This can also be written A
i−→ X

q−→ X/A. This sequence of morphisms between topological
spaces induces a sequence of morphisms between commutative rings (possibly without identity)

K̃(X/A)
q∗−→ K̃(A)

i∗−→ K̃(X) as depicted in Figure 1. Further the sequence of ring homomor-
phisms is exact, which is proved in [4].

A X X/A

K̃(A) K̃(X) K̃(X/A)

i

K̃

q

K̃ K̃

i∗ q∗

Figure 1. Inducing Sequence of Rings

Note that the map r in Example 6.3 composed to the identity with the inclusion map, r ◦ i = Id
allowed for the convenient application of the Splitting Lemma. In fact, any map r that satisfies
this property is called a retract, and the existence of a retract will guarantee a splitting. Note the
following exmaple.

Example 6.6. Consider the exact sequence depicted in Figure 1 with the space X∨Y with subspace
Y ⊂ X ∨ Y where Y is contractible. Further note that (X ∨ Y )/Y ≈ X. This gives the exact
sequence

K̃(X)
q∗−→ K̃(X ∨ Y )

i∗−→ K̃(Y )

Additionally, there is a retract r : X ∨ Y → Y , for Y is contractible and thus can be collapsed to

point. Then i∗ ◦ r∗ = Id allows for an application of the Splitting Lemma, which gives K̃(X ∨Y ) ∼=
K̃(X)⊕ K̃(Y ).

This short exact sequence can be extended into a slightly longer exact sequence. First consider the
sequence of spaces beginning with A and X such that each additional space is given by the disjoint
union of the previous space together with the cone of the space two steps back. The disjoint unions
allow for natural inclusions between spaces as depicted in the following diagram.

A
i−→ X

i−→ X ∪ CA i−→ (X ∪ CA) ∪ CX i−→ ((X ∪ CA) ∪ CX) ∪ C(X ∪ CA)

The strategy will be to apply claim ?? to show that each adjacent pair of ring homomorphisms

induced by K̃ is exact. However, applying this claim requires taking the topological quotient of
each space by collapsing the subspace two steps back to a point.

X
q−→ X/A X ∪ CA q−→ (X ∪ CA)/CX (X ∪ CA) ∪ CX q−→ ((X ∪ CA) ∪ CX)/(CX)

So, the above diagrams define the inclusion maps and show the necessary quotient maps to incorpo-
rate, but claim ?? requires a relationship between the inclusion and quotient maps that is currently
missing from this construction. For this, consider the relationship between spaces given by the
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following additional quotient maps, which result from quotienting out the by the most recently
added cone space.

X ∪ CA Q−→ X/A (X ∪ CA) ∪ CX Q−→ (X ∪ CA)/CX

((X ∪ CA) ∪ CX) ∪ C(X ∪ CA)
Q−→ ((X ∪ CA) ∪ CX)/(CX)

The following result comes to the rescue.

Claim 6.7. If A is contractible, then the quotient map q : X → X/A gives an isomorphism

K̃(X) ∼= K̃(X/A).

The proof of this is given in [4], but the idea is that collapsing a contractible subspace is given a

homotopy equivalence, so they will share similar properties — including the K̃ groups.

The top two rows of Figure 2 summarizes all of the maps discussed so far.

A X X ∪ CA (X ∪ CA) ∪ CX (X ∪ CA) ∪ CX ∪ C(X ∪ CA)

A X X/A (X ∪ CA)/(CX) ((X ∪ CA) ∪ CX)/(X ∪ CA)

A X X/A SA SX

i

Q

i

Q
q

i

Q
q

Q

i

q
Q

≈ ≈ ≈ ≈ ≈

Figure 2. Relationship between Inclusion and Quotient Maps

Figure 2 also includes the following additional pleasant isomorphisms discussed previously in Ex-
ample 3.29.

(X ∪ CA)/CX ≈ SA (((X ∪ CA) ∪ CX) ∪ CX) ∪ C(X ∪ CA))/C(X ∪ CA) ≈ SX

Next, applying the K̃ functor on all of these maps will take the inclusion maps and quotient maps

to ring homomorphisms in the opposite directions. Additionally, K̃ will take the isomorphisms to
ring isomorphisms and will additionally take each map denoted with a “Q” to a ring isomorphism
by claim 6.7. This is summarized in Figure 3. Note that each i∗q∗ composition gives a short

K̃(A) K̃(X) K̃(X ∪ CA) K̃((X ∪ CA) ∪ CX) K̃(. . . )

K̃(A) K̃(X) K̃(X/A) K̃((X ∪ CA)/(CX)) K̃(. . . )

K̃(A) K̃(X) K̃(X/A) K̃(SA) K̃(SX)

∼= ∼=

i∗

q∗ ∼=

i∗

q∗ ∼=

i∗

q∗ ∼=

i∗

∼= ∼= ∼= ∼= ∼=

Figure 3. Applying the Functor K̃

exact sequence as discussed earlier. Then, by viewing each inclusion map as the composition of
an isomorphism with a quotient map, the entire top row is exact. By further composing with the
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vertical isomorphisms provides a simple short exact sequence as shown in figure 4. However, while
this sequence is useful, a cohomology theory requires more structure.

K̃(SX) K̃(SA) K̃(X/A) K̃(X) K̃(A)

Figure 4. The Resulting Exact Sequence

3. K-theory as a Cohomology Theory

A cohomology theory requires an infinite collection of functors where each functor takes a fixed
subcategory topological space pairs to the category of abelian groups. K-theory considers the
subcategory of compact Hausdorff space-subspace pairs — all pairs of the form (A,X) discussed
earlier. A cohomology theory must further satisfy the Eilenberg-Steenrod cohomology axioms to
some degree. But at a minimum, the functors must take homotopic continuous maps to equivalent
homomorphisms, and additionally induce an exact sequence extending infinitely in both directions.
A cohomology theory that satisfies these minimum requirements is called a reduced cohomology
theory. By building upon the work in the previous section, reduced K-theory can be extended into
a reduced cohomology theory.

The first step to develop this cohomology theory is to extend the exact sequence developed in the
previous section into an exact sequence that extends infinitely in both directions. Figure 4 induces
a slightly longer exact sequence given the initial compact Hausdorff space-subspace pair (X,A), but
repeating the same process for the pair (SX,SA) will give a longer sequence. This can be extended
infinitely to the left giving the infinite exact sequence.

· · · −→ K̃(S2X) −→ K̃(S2A) −→ K̃(SX/SA)) −→ K̃(SX) −→ K̃(SA) −→ K̃(X/A) −→ K̃(X) −→ K̃(A)

However, getting the sequence to extend infinitely to the right requires the following theorem.

Theorem 6.8. (Bott Periodicity) For any compact Hausdorff space X there is an isomorphism

K̃(X) ∼= K̃(S2X).

The proof of Bott periodicity is discussed in the following section. Applying Bott periodicity

to the infinite exact sequence induced by the pair (X,A) immediately gives K̃(X) ∼= K̃(S2X),

KR(A) ∼= K̃(S2A). In fact, there are only 6 distinct group isomorphism classes in the infinite exact
sequence. This justifies drawing the following cyclic commutative diagram. A cyclic exact sequence

K̃(X/A) K̃(X) K̃(A)

K̃(SA) K̃(SX) K̃(SX/SA)

Figure 5. Cyclic Exact Sequence

can be interpreted as an exact sequence extending infinitely in both direction by continuing around
the cycle infinitely in both directions. However, before unraveling the cyclic sequence, adopt the
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following change in notation to negative indices. From now on, denote K̃(SkX) by K̃−k(X), denote

K̃(SkA) by K̃−k(A) and denote K̃(SkX/SkA) by K̃−k(X,A). However, by Bott periodicity and
as depicted in Figure 5, there are 6 distinct group isomorphism classes:

K̃−1(X,A) K̃−1(X) K̃−1(A) K̃0(X,A) K̃0(X) K̃0(A)

This allows for the following definition for positive indices. Specifically, let K̃k(A) be K̃0(A) for

even k and K̃1(A) for odd k. Doing the same for K̃k(X) and K̃k(X,A) gives the following infinite
sequence of groups.

· · · −→ K̃−1(X) −→ K̃−1(A) −→ K̃0(X,A) −→ K̃0(X) −→ K̃0(A) −→ K̃1(X,A) −→ K̃1(X) −→ · · ·

This infinite sequence is indeed exact, for it is only a reformulation of the cyclic exact sequence

shown in figure 5 and each functor K̃k preserves homotopy by K̃ preserves homotopy, thus this
construction gives a valid cohomology theory.

4. Further Structure of K-theory

The external product is central to the proof of Bott periodicity and provides the structure necessary
for the application in the following chapter.

Definition 6.9 (External Product). Let X and Y be compact Hausdorff spaces and let p1 : X ×
Y → X and p2 : X × Y → Y be the natural projections. Then, the external product is a mapping
µ : K(X)⊗K(Y )→ K(X × Y ) as defined by µ(a⊗ b) = p∗1(a)p∗2(b) and notated by a ∗ b.

The external product of K-theory has particularly nice structure on spheres. This is due to consid-
ering the canonical line bundle H over CP 1, and noting that by S2 ≈ CP 1, the bundle H can also
be viewed as a bundle over S2. Further recall the relationship (H ⊗H)⊕ ε1 ≈ H ⊕H as discussed
in the Chapter 4. This can be denoted by H2 + 1 = 2H, which can be more compactly written as
(H − 1)2 = 0. Now, note 1, H ∈ K(S2) and consider the subring Z[H]/(H − 1)2 of K(S2) together
with the inclusion i : Z[H]/(H − 1)2 → K(S2).

Claim 6.10. The mapping i : Z[H]/(H − 1)2 → K(S2) is an isomorphism.

The strategy of this proof is to consider the composition of the external product map µ and the
above inclusion map i to get a mapping M .

M : K(X)⊗ Z[H]/(H − 1)2
i−→ K(X)⊗K(S2)

µ−→ K(X × S2)

In fact, the above map is an isomorphism. Hatcher gives a full ten page proof of this in [4], but the
strategy is to manipulate the form of the clutching functions to show injectivity and surjectivity.
This result is more important than Claim 6.10 and so is now stated.

Theorem 6.11 (Fundamental Product Theorem). M : K(X) ⊗ Z[H]/(H − 1)2 → K(X × S2) as
described above is an isomorphism.

The Fundamental Product Theorem implies Claim 6.10 by taking X to be a point. This follows
from K({pt}) = Z together with Z ⊗ R ∼= R for any ring R as discussed in Claim 2.11. Finally,
note that substituting Claim 6.10 into Theorem 6.11 reveals that the map M is an isomorphism
K(X) ⊗ K(S2) → K(X × S2), so in fact the mapping M is the external product µ, thus the
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Fundamental Product Theorem is a statement about the external product. The takeaway is that
the External product on K-theory has particularly useful structure on spheres.

Similar patterns on spheres arise in the external product of reduced K-theory.

Example 6.12. The fundamental product theorem gives that K(S2) ∼= Z[H]/(H − 1)2, but the

relationship between reduced K-theory and unreduced K-theory gives that K̃(S2) ∼= Z with trivial
multiplication. To see this, note that any element of K(X) can be expressed by k+mH. However,
this is better written as n+m(H − 1) so that n represents the dimension of the vector bundle and

m can range without affecting the dimension. Now recall that K̃(S2) is the kernel of the mapping
f∗ : K(S2) → K({pt}) induced by f : {pt} → K(S2). This pullback is exactly Example 4.17 with
the domain space set to a point. Then f∗(E) for any vector bundle E will give the trivial bundle
of dimension E. In other words, f∗ : n + m(H − 1) 7→ n. Any element any element m(H − 1) is
then mapped to 0, so the kernel of f∗ is the infinite cyclic group generated by (H − 1). However,
the condition (H − 1)2 = 0 forces the product of any two elements in the kernel to be 0.

The external product on reduced K-theory is defined by taking the short exact sequence in Claim ??
with the initial space-subspace pair to be X ∧ Y ⊂ X × Y . Considering the last three terms of the
resulting sequence gives the following short exact sequence.

K̃(X ∧ Y ) −→ K̃(X × Y ) −→ K̃(X ∨ Y )

As noted earlier, the splitting lemma always applies to this construction due to the relationship

between inclusions and retracts. Thus it follows that K̃(X × Y ) ∼= K̃(X ∧ Y ) ⊕ K̃(X ∨ Y ).
Now note the following expressions for K(X ∧ Y ) and K(X) ⊗ K(Y ), recalling the relationship

K̃(X ∨Y ) ∼= K̃(X)⊕ K̃(Y ) discussed previously in Example 6.6 as well as the previously discussed
properties of direct sum and tensor product.

K(X)⊗K(Y ) ∼= (K̃(X)⊕ K̃(Z))⊗ (K̃(Y )⊕ K̃(Z)) ∼= (K̃(X)⊗ K̃(Y ))⊕ K̃(X)⊕ K̃(Y )⊕ Z

K(X × Y ) ∼= (K̃(X ∧ Y )⊕ K̃(X ∨ Y ))⊕ Z ∼= (K̃(X) ∧ K̃(Y ))⊕ K̃(X)⊕ K̃(Y )⊕ Z

Note the similarities between the expanded forms of K(X) ⊗ K(Y ) and K(X × Y ). Because
nearly every term on the right hand side of the expanded form is equivalent, an the external
product µ : K(X) ⊗ K(Y ) → K(X × Y ) will induce an external product of reduced K-theory

µ̃ : K̃(X)⊗ K̃(Y )→ K̃(X) ∧ K̃(Y ). This construction is discussed in more detail in [4].

This close relationship between µ and µ̃, the Fundamental Product Theorem gifts reduced K-
theory with pleasant properties. For instance, µ is an isomorphism when taking Y = S2 by the

Fundamental Product Theorem. But then this forces µ̃ to be an isomorphism and thus K̃(X) ⊗
K̃(S2) ∼= K̃(X) ∧ K̃(S2). Due to the quotient map Sn → Sn ∧ X discussed in Example 3.28 in

combination with Claim 6.7, this gives an isomorphism K̃(X)∧K̃(S2) ∼= K̃(S2X). Additionally, by

Example 6.7, K̃(S2) ∼= Z and thus K̃(X)⊗ K̃(S2) ∼= K̃(X). Combining all of these isomorphisms
gives the following result.

K̃(X) ∼= K̃(X)⊗ K̃(S2) ∼= K̃(X) ∧ K̃(S2) ∼= K̃(S2X)
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Taking X to be S0 and iteratively applying the above isomorphism provides the result K̃(S0) ∼=
K̃(S2n) for any n; similarly, taking X to be S1 gives K̃(S1) ∼= K̃(S2n+1), which justifies the Bott
Periodicity Theorem stated previously as Theorem 6.8.

Structure on the K̃ functor is learned from the functor K, but now K̃ returns the favor and gives
insight to K(S2k).

Example 6.13. Consider K(S2k) for some K. By Claim 6.4 and Bott Periodicity,

K(S2k) ∼= K̃(S2k)⊕ Z ∼= K̃(S2)⊕ Z ∼= K(S2)

Thus K̃(S2k) ⊕ Z ∼= Z[a]/(a − 1)2, which is equivalent to K̃(S2k) ⊕ Z ∼= Z[γ]/(γ)2 by a change of
variables.

Example 6.14. Now consider K(S2k × S2l). By sequentially applying the External Product The-
orem, the result from Example 6.13 and the result from Example 2.10, it follows that

K(S2k × S2l) ∼= K(S2k)⊗K(S2l) ∼= Z[α]/(α2)⊗ Z[β]/(β2) ∼= Z[α, β]/(α2, β2)

Additionally, by tracing the definition of the external product through the isomorphism chain, it
follows that α = p∗1(γ) and β = p∗2(γ) if p1 is the projection S2k×S2l → S2k and p2 is the projection
S2k × S2l → S2l.



CHAPTER 7

Division Algebra Application

Recall from Definition 1.7 that a division algebra is a ring with multiplicative inverses. Further
recall that a division algebra structure in Rn induces an H-space structure over the sphere Sn−1

by considering the subset of Rn with norm 1. And so if a division algebra structure on Rn exists,
then there is an H-space structure on the sphere Sn−1. As Bott periodicity hints at, K-theory has a
close relationship with spheres, making K-theory a good tool to examine the existence of H-spaces
on spheres. This chapter will use K-theory to show that an H-space structure cannot exist on any
sphere other than S0, S1, S3, and S7. This conclusion regarding H-spaces together with the explicit
examples of the reals, the complex numbers, the quaternions, and the octonions gives the following
theorem.

Theorem 7.1. Rn is a division algebra only when n is 1, 2, 4, or 8.

1. The odd case

The argument will first rule out the possibility of a division algebra structure on odd dimensions
other than 1, so assume for the purpose of contradiction that there is a division algebra structure
on R2k+1 for some positive integer k. It then follows that S2k is an H-Space, which promises
a continuous mapping µ : S2k × S2k → S2k. Additionally let p1 denote the projection from
S2k×S2k to the first factor and let p2 be the projection to the second factor. Applying the K-theory
functor to the H-space multiplication mapping gives a homomorphism between rings µ∗ : K(S2k)→
K(S2k×S2k). By Example 6.14, the homomorphism is of the form µ∗ : Z[γ]/(γ2)→ Z[α, β]/(α2, β2)
such that α = p∗1(γ) and β = p∗2(γ). Note that γ is the generator of the ring and in particular, γ is
H − 1 where H denotes the canonical line bundle over the space.

The contradiction will arise in analyzing the quantity µ∗(γ). To accomplish this, define i1 : S2k →
S2k × S2k by i1 : x 7→ (x, e) where e is the identity element of S2k as an H-space. Note that µ ◦ i1
is the identity, giving i∗1 ◦ µ∗ is the identity, so studying i∗1 will give information about µ∗.

It follows from the definition of i1 that p1 ◦ i1 = Id and so i∗1 ◦ p∗1 is identity. Plugging in α to both
sides and recalling the definition of α then gives:

i∗1(α) = γ

In a similar way, it follows that p2 ◦ i1 is a constant function always mapping to the H-space identity
point e. Denote this by p2 ◦ i1 = conste, which gives i∗1 ◦ p∗2 = const∗e. Again plug in γ to both sides
and recall the definition of β and thus i∗1(β) = const∗e(γ).

To simplify this further, recall that γ is H − 1 where H is the canonical line bundle. And note that
because each fiber of H is of dimension 1 and conste maps to a point, the pullback const∗e(H) is the

65
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trivial bundle ε1, which is the multiplicative identity denoted by 1. Thus by the ring homomorphism
properties:

const∗(γ) = const∗(H − 1) = const∗(H)− const∗(1) = 1− 1 = 0

This gives the following crucial piece of information.

i∗1(β) = 0

Now return to analyzing the quantity µ∗(γ). As an element of Z[α, β]/(α2, β2), the quantity is of
the form µ∗(γ) = n+ aα+ bβ +mαβ for some integers a, b, n,m. However, now apply i∗1 ◦ µ∗ = Id
with the information i∗1(α) = γ and i∗1(β) = 0 and keeping ring homomorphism properties in mind:

γ = i∗1(µ∗(γ)) = i∗1(n+ aα+ bβ +mαβ) = n+ a · i∗1(α) + b · i∗1(β) +m · i∗1(β) · i∗1(α) = n+ aγ

And thus by γ = n + aγ, it follows that n = 0 and a = 1. Applying the same argument by
considering the inclusion i2 : S2k → S2k × S2k by i2 : x 7→ (e, x) will give that b = 1. And so µ∗

can be written in the reduced form
µ∗ = α+ β +mαβ

The contradiction arises from the observation that the relation γ2 = 0 gives that (µ∗(γ))2 = 0.
However, the derived expression for µ∗(γ) and the relations α2 = β2 = 0 imply a different result.

(µ∗(γ))2 = (α+ β +mαβ)2 = 2αβ 6= 0

The above proof is an elaboration of the proof given in [4].

2. The even case

This section will closely follow the discussion in [4], showing that if a division algebra structure
exists on R2n, then n must be 1, 2, or 4. To begin, however, assume a division algebra structure on
Rk without any restrictions on k. This induces an H-Space multiplication µ : Sk−1×Sk−1 → Sk−1.
The goal is to use this multiplication to construct a map µ̂ : S2k−1 → Sk. Before the general
construction, first consider the particular case of k = 0, and let S0 = {0, 1}. Now let µ : S0×S0 →
S0 be given by µ : (x, y) 7→ x. Now represent the domain S1 of µ̂ by the boundary ∂(D1×D1), which
is equivalent to ∂(D1)×D1∪D1×∂(D1), which is again equivalent to S0×I∪I×S0. Represent the
codomain S1 of µ̂ as the union of the two hemispheres, D+

1 ∪D
−
1 with their boundaries S0 associated.

Now let the map µ̂ : S1 → S1 be defined by taking these representations µ̂ : S0×I∪I×S0 → D+
1 ∪D

−
1

as follows

µ̂(x, y) =

{
y · g(x, 1) ∈ D1

+ if (x, y) ∈ I × S0

x · g(1, y) ∈ D1
− if (x, y) ∈ S0 × I

The general construction takes the map µ : Sk−1×Sk−1 → Sk−1 to a new map map µ̂ : S2k−1 → Sk

by expressing the domain and codomain in the map by µ̂ : ∂(Dk)×Dk ∪Dk×∂(Dk) together with
the following definition.

µ̂(x, y) =

{
|y| · g(x, y/|y|) ∈ Dk

+ if (x, y) ∈ Dk × ∂(Dk)

|x| · g(x/|x|, y) ∈ Dk
− if (x, y) ∈ ∂(Dk)×Dk

Now place the restriction that k is even, letting k = 2n. This provides a mapping µ̂ : S4n−1 → S2n.
This mapping allows for the disk D4n to be attached to S2n, resulting in a combination Cf .
Specifically, let Cf = S2n ∪∗ D4n/ ∼ for an equivalence relation ∼ defined by x ∼ y for x ∈ D4n
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and y ∈ S2n if µ̂(x) = y. Additionally note that Cf/S
2n ≈ S4n and thus taking the space-subspace

pair (Cf , S
2n) together with the quotient and inclusion maps induces the following exact sequence.

K̃(S4n)
i∗−→ K̃(Cf )

q∗−→ K̃(S2n)

Now let α ∈ K̃(Cf ) be the image of the generator of the cyclic group K̃(S4n) under the map i∗

and let β ∈ K̃(Cf ) map to the generator of the cyclic group K̃(S4n) through the map q∗. Note

q∗(β)2 = q∗(β), which is simply 0 by the multiplication in K̃(S2n) trivial and thus β2 ∈ Ker(q∗).
But by the sequence exact, β2 ∈ Im(i∗) and the image is generated by the element α. Thus β2 = hα
for some integer h. This integer h is the Hopf invariant of µ, and is key to the proof. It follows
from the H-Space properties of µ that h must be ±1, which is fully described in [4].

The Adams operations is a useful family of homomorphisms between K-theory rings. In this case,
Adams operations demonstrate that for a map µ̂ : S4n−1 → S2n to have Hopf invariant ±1, it must
be that n = 1, 2, or 4 which will give that R2n can only be of dimension 2, 4, or 8. In particular,
the Adams operations is a family of ring homomorphisms ψk : K(X) → K(X) indexed over the
nonnegative integers that satisfies the following pleasant properties.

(i) ψkf∗ = f∗ψk.
(ii) ψk(L) = Lk for any line bundle L.
(iii) ψk ◦ ψl = ψkl for all k and l.
(iv) ψp(α) ≡ αp (mod p) for any prime p.

The construction of such a set of operations to demonstrate existence is technical and a full proof
is given in [4, p. 62-64].

Accepting the existence of such a family of ring homomorphisms, examine how these operations act

on base space K̃(S2n). First consider the n = 1 case, letting α = H − 1 where H is the canonical
line bundle over CP 1. Both H and 1 are line bundles, property (ii) of the Adams operations with
the homomorphism properties gives the following result.

ψk(α) = ψk(H − 1) = ψk(H)− ψk(1) = Hk − 1 = (α+ 1)k − 1

Because the multiplication in K̃(S2) is trivial, α2 = 0. Thus in the expansion of (α+ 1)k, only the
0 and 1 degree terms will survive, which gives the following simplification.

ψk(α) = (α+ 1)k − 1 = kα+ 1− 1 = kα

This result on the generator of K̃(S2) gives that the Adams operations ψk act by ψk(E) = kE

for any E ∈ K̃(S2). An induction argument using the external product gives the more general

conclusion that ψk(E) = knE over K̃(S2n).

Now return to the map µ and the induced variables α and β representing the image of the K̃(S4n)

generator and the preimage of the K̃(S2n) of the exact sequence respectively. Then, α is the

generator of the subring Im(i∗) ⊂ K̃(Cf ), which is isomorphic to K̃(S4n) and thus the result
discussed in the previous paragraph applies and gives ψk(α) = k2nα. Similarly, β is related to the

generator of a subgroup of K̃(Cf ) isomorphic to K̃(S2n). A difference, however, is that β may be
offset from the generator of this subring by some element of the kernel. Thus we can only write
ψk(β) = knβ + µkα for some µk ∈ Z.

This expression of ψk(β) immediately gives some useful information. Combining the expression
β2 = hα for Hopf invariant α with ψ2(β) ≡ β2 (mod 2) as promised by Property (iv) gives
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ψ2(β) ≡ hα (mod 2). Now incorporate the expression for ψ2(β) derived in the previous paragraph,
which gives 2nβ + µkα ≡ hα (mod 2). This expression then gives µ2 ≡ h (mod 2) and so µ2 is odd
by h = ±1, which will be of use later.

Now use the expressions for ψk(α) and ψk(β) to expand the expression ψ2ψ3(β).

ψ2ψ3(β) = ψ2(3nβ + µ3α) = 2n3nβ + (22nµ3 + 2nµ3)α

Note the same the commutativity of the Adams operations by ψ2ψ3 = ψ6 = ψ3ψ2. Thus repeating
the same expansion for ψ3ψ2(β) gives the relationship

2n3nβ + (22nµ3 + 3nµ2)α = 3n2nβ + (32nµ2 + 2nµ3)α

Canceling the β term from each side and canceling out the remaining α, and rearranging gives the
following result.

2n(2n − 1)µ3 = 3n(3n − 1)µ2

And thus 2n divides the right hand side. By µ2 odd, as noted earlier, it must be that 2n divides
3n − 1. An elememtary number theory proof given in [4] gives that 2n only divides 3n − 1 when n
is 1, 2, or 4.
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