
General Exam Paper

Sean Richardson

January 14, 2025

1 Introduction

Consider a closed Riemannian manifold M with set G of unit-speed closed
geodesics. The X-ray transform I0 : C∞(M) → ℓ∞(G) is given by integrat-
ing a given smooth function f over every closed geodesic γ ∈ G:

(I0f)(γ) :=

∫ ℓ(γ)

0

f(γ(t))dt

where ℓ(γ) denotes the length of γ. A natural question is the injectivity of
this X-ray transform: do the integral values over all closed geodesics uniquely
identify the function? We will see the answer depends on the dynamics of the
geodesic flow over the manifold, which in turn depends on the geometry of the
manifold M .

As a first example, we consider the case of the X-ray transform over the sphere
S2, which was originally studied by Funk [Fun13] and is often called the Funk
Transform. In this case, the set of closed geodesics G over S2 are all the great
circles. Is the X-ray transform over S2 injective? Note any function f ∈ C∞(S2)
that is odd, meaning f(−x) = −f(x), will satisfy I0f = 0. As there are many
nonzero odd functions, this demonstrates the X-ray transform is not injective
over the sphere.

Next consider the example of a closed hyperbolic surface H/Γ where H is the
hyperbolic half-plane of constant Gaussian curvature −1, and Γ is a discrete
group acting freely and properly on H. In this case, the collection G of closed
geodesics on H/Γ is significantly more complex and chaotic, but G will be count-
able with and contain a unique closed geodesic in each free homotopy class. It
turns out the X-ray transform over H/Γ is injective and much of this document
is dedicated to partially explaining why. A key distinction between the case of
S2 and the case of H/Γ is that geodesics over negatively curved manifolds have
more chaotic behavior than geodesics over positively curved manifolds. We will
see this key property is that H/Γ has an Anosov metric, meaning the geodesic
flow is sufficiently chaotic and will be precisely defined in Section 2.2, and in
fact I0 is injective for all Anosov manifolds.
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The question of injectivity of the X-ray transform over closed Anosov manifolds
has a few notable applications and historic motivations. First, given such a
closed Anosov manifold M , this question is closely related to the problem of
marked length rigidity ; that is, to what extend does the length spectrum Lg,
which encodes the lengths of all closed geodesics, determine the underlying Rie-
mannian metric g? The Burns-Katok conjecture [BK85] is that for any two
Anosov metrics g1, g2 giving the same length spectrum Lg1 = Lg2 , then there
exists a diffeomorphism ϕ isometric to the identity such that ϕ∗g1 = g2. This
conjecture was first proven true for conformal metrics [Kat88], then for nega-
tively curved surfaces [Cro90, Ota90], when one of the metrics is locally sym-
metric and the other is negatively curved [Ham99], then for negatively curved
metrics close together [GL19], and most recently for Anosov surfaces [GLP23].
Importantly, the local problem of infinitesimal marked length rigidity – if a small
perturbation of an Anosov metric is given by the pullback of such an isotopy –
is equivalent to the injectivity of an X-ray transform I2 on symmetric 2-tensors.
While we will discuss the injectivity of the X-ray transform I0 on functions for
simplicity, much of the theory caries over to I2.

In fact, the injectivity of the X-ray transform is related to Kac’s famous question
“can one hear the shape of a drum?” [Kac66], which is the question of spectral
rigidity : does the Laplace spectrum of a manifold determine the underlying
Riemannian metric up to isometry? It was conjectured that perhaps the answer
is positive for Anosov manifolds, but Vigneras [Vig80] found a pair of isospectral
hyperbolic surfaces that are not isometric. However, there is still the question of
infinitesimal spectral rigidity on Anosov manifolds: must any isospectral family
of perturbations of a metric be given by the pullbacks of an isotopy? The
answer is yes [GK80b, CS98, GL19]: infinitesimal spectral rigidity is implied by
infinitesimal marked length rigidity, which is in turn implied by the injectivity
of I2, which is proven by similar techniques to the case of I0, which hopefully
provides sufficient reason to learn some of these techniques in this document.

While this document will focus on the injectivity of the X-ray transform over
Anosov manifolds, there is a related X-ray transform on manifolds with bound-
ary in which the X-ray data is given by the integrals of an unknown function
over all geodesics that begin and terminate at the boundary. In this case, the
X-ray transform is injective so long as the manifoldM with boundary is simple,
meaning M is simply connected and has no conjugate points. The study of the
X-ray transform on simple manifolds and the X-ray transform on Anosov mani-
folds are often in analogy and structurally similar. For example, the question of
injectivity of the simple manifold X-ray transform on 2-tensors follows naturally
from the widely studied boundary rigidity inverse problem in a similar way the
question of injectivity of I2 on Anosov manifolds follows from the question of
marked length rigidity. In fact, it was recently proven in [EL24] that spectral
rigidity for Anosov manifolds implies boundary rigidity for certain manifolds
(including simple manifolds) by using [CEG23] to embed these manifolds with
boundary into Anosov manifolds.
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2 Preliminaries

2.1 Unit tangent bundle and geodesic flow

For any Riemannian manifold (M, g), the unit tangent bundle SM = {(x, v) ∈
TM : |v|g = 1} is all unit-length elements of the tangent bundle, which inherits
the natural projection π0 : SM → M . The unit tangent bundle is the phase
space for the geodesic flow φt : SM → SM given by φt(x, v) = (γx,v(t), γ̇x,v(t))
where γx,v(t) denotes the unique geodesic with initial position γx,v(0) = x and
initial velocity γ̇x,v(0) = v. We denote by X the smooth vector field over SM
generating this geodesic flow. The dynamics of this geodesic flow plays a crucial
role in studying the X-ray transform, so we discuss the geometry of its phase
space SM .

The unit tangent bundle SM inherits a natural metric from M , which we now
describe. Note smooth curves Z : (−ε, ε) → SM over the unit tangent bundle
take the form Z(t) = (α(t),W (t)) for a smooth curve α : (−ε, ε) →M over the
base manifold together with a smooth vector field W (t) ∈ Sα(t)M over α(t).
Thus we may think of a tangent vector ξ ∈ T(x,v)SM as the velocity vector of

such a curve ξ = d
dt

∣∣
t=0

Z(t) so that α(0) = x and W (0) = v. Now note the
Levi-Civita connection ∇ and corresponding covariant derivative Dt along α(t)
allow for the natural identification

ξ =
d

dt

∣∣∣∣
t=0

(α(t),W (t)) ↔
(
d

dt

∣∣∣∣
t=0

α(t), DtW (t)|t=0

)
= (dπ0ξ, Kξ)

where the connection map K : TSM → TM is given by Kξ := DtW |t=0. Then
the metric g on M naturally induces the Sasaki metric G on SM by

⟨ξ, η⟩G := ⟨dπ0ξ, dπ0η⟩g + ⟨Kξ, Kη⟩g
for ξ, η ∈ T(x,v)SM . In fact, defining the vertical bundle V := ker dπ0 and the

bundle H̃ := ker K we have a splitting TSM = V ⊕ H̃ and linear isomorphisms
dπ0 : H̃ → TM and K : V → TM onto their images. The Sasaki metric is
then defined by declaring these isomorphisms to be isometries and declaring the
splitting TSM = V ⊕ H̃ to be orthogonal. Additionally, note the definition of
the Levi-Civita connection ensures the generator X of the geodesic flow satisfies
X ∈ ker K = H̃ and so we make the orthogonal decomposition H̃ = X ⊕ H into
the flow direction X := RX and the horizontal bundle H and so we have the
orthogonal decomposition

TSM = X⊕H⊕ V.

In the caseM is a surface, the subbundles X, H, and V are rank 1 and spanned by
the unit-length smooth vector fields X, H, V respectively. By local coordinate
computations, we may compute the Lie algebra of this frame, often called the
structure equations:

[X,V ] = H, [H,V ] = −X, [X,H] = −KV. (1)
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where K denotes the Gaussian curvature function. Note that by Liouville’s
theorem we have divX = 0. We also have divH = div V = 0 and so we have
the integration by parts formulas

(Xu,w)L2(SM) = −(u,Xw)L2(SM)

(Hu,w)L2(SM) = −(u,Hw)L2(SM)

(V u,w)L2(SM) = −(u, V w)L2(SM).

See [PSU23] for more details.

2.2 Anosov Flows and Manifolds

The reason the X-ray transform on S2 is not injective while the X-ray transform
on a hyperbolic surface D/Γ is injective is because the geodesic flow over surfaces
of negative curvature has chaotic properties such as ergodicity. In fact, Anosov
[Ano69] first proved the geodesic flow over manifolds with negative sectional
curvature is ergodic for arbitrary dimension by showing the flow has a key
property, which is now referred to as the Anosov property. This Anosov property
is the key property that allows for proving injectivity of the X-ray transform
via microlocal techniques. Consider a compact manifold M with flow φt and
infinitesimal generator X. The flow φt is Anosov if there is a continuous and
flow-invariant splitting of the tangent space

TM = RX ⊕ Es ⊕ Eu

into the flow direction, the stable bundle, and the unstable bundle respectively
such that given an arbitrary metric | · | on M there exists constants C, λ > 0 so
that for all t ≥ 0

|dφt(v)| ≤ Ce−λt|v| for v ∈ Es,

|dφ−t(v)| ≤ Ce−λt|v| for v ∈ Eu.

That is, Anosov flows have a strong sensitivity to initial conditions at every
point – a small perturbation in a non-flow direction will result in a drastically
different trajectories in either the forward or backward flow direction. To apply
the microlocal tools of Section 2.3, we are interested in the dual splitting

T ∗M = E∗
0 ⊕ E∗

s ⊕ E∗
u (2)

defined so that E∗
0 (Es ⊕ Eu) = 0, E∗

s (Es ⊕ RX) = 0, and E∗
u(Eu ⊕ RX) = 0.

For all Anosov flows, the collection of points belonging to periodic orbits is
dense in M. Often times, flows will preserve a volume form µ (for instance, any
Hamiltonian system preserves the Liouville volume form) in which case the flow
is called volume preserving. Any volume preserving Anosov flow is topologically
transitive, meaning there exists a point with dense orbit, and ergodic, meaning
kerX|L2

µ
contains only the constants. We are interested in the geodesic flow
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φt : SM → SM over a Riemannian manifold M , which is a volume preserving
flow by taking the Liouville form dΣ, defined as the volume form induced by the
Sasaki metric on SM . If this flow is Anosov, we say M is an Anosov manifold,
which includes all manifolds with strictly negative sectional curvature. In this
case, there is a unique periodic orbit in each free homotopy class of M . For
proofs of the above claims, see [Lef25, Chapter 8].

2.3 Microlocal tools

In the past fifteen years, techniques from microlocal analysis have been applied
to the study of the dynamics of Anosov flows with much success, including
results on the injectivity of the X-ray transform. Due to the dual splitting (2),
it is often required to treat different direction of the cotangent bundle of the
phase space differently, and microlocal analysis is precisely the tool for this. We
review some of the relevant notions from microlocal analysis here.

We will always work over a closed Riemannian manifold M with metric g. The
space of distributions D′(M) over M is the dual space of continuous linear
functionals C∞(M) → C and is equipped with the weak-star topology of the
standard seminorm topology on C∞(M). Recall a pseudo-differential operator of
order m over an open subset X ⊂ Rn is a linear operator A : C∞

c (X) → C∞(X)
defined using the Fourier transform by

Af = Op(a)f := (2π)−n

∫
Rn

eix·ξa(x, ξ)f̂(x, ξ)dξ (3)

where a(x, ξ) ∈ C∞(T ∗X) is a symbol of order m, meaning for some ρ, δ ∈ [0, 1]
it satisfies the bound

|∂βξ ∂
α
x a(x, ξ)| ≤ Cα,β⟨ξ⟩m−ρ|β|+δ|α|. (4)

We denote by Sm
ρ,δ(T

∗X) the class of all symbols satisfying (4) and we write
Ψm

ρ,δ(X) = {Op(a) : a ∈ Sm
ρ,δ(T

∗X)} to denote the corresponding class of pseu-
dodifferential operators. It is most common to take ρ = 1 and δ = 0, but we will
need more general ρ and δ. Note, for example, every differential operator of order
m is a pseudodifferential operator of orderm for any ρ, δ ∈ [0, 1]. Each pseudod-
ifferential operator A = Op(a) has a well-defined full symbol σfull(A) = a, but
unfortunately this full symbol is not invariant under a change of coordinates.
However, the leading part of this full symbol is called the principal symbol which
is well-defined on the cotangent bundle and is defined as the equivalence class
under addition

σpr(A) ∈ Sm
ρ,δ(T

∗X)/S
m−(2ρ−1)
ρ,δ (T ∗X). (5)

Over a closed Riemannian manifold M of dimension n, we say a linear operator
A : C∞(M) → C∞(M) is a pseudodifferential operator of order m if for any
coordinate chart κ : U → V for U ⊂ M , V ⊂ Rn and bump functions ϕ, ψ ∈

5



C∞
c (U) identically 1 on U ′ ⊂ U , we have that

(κ−1)∗ψAϕκ∗ ∈ Ψm
ρ,δ(Rn). (6)

where ψ and ϕ are multiplication operations in the above composition. We
denote by Ψm

ρ,δ(M) the space of pseudodifferential operators overM , which again
includes differential operators of order m over M . We may locally define the
(full) symbol σκ

full(A) of a pseudodifferential operator A by taking the pullback
of the symbol of (6) although this depends on the coordinate chart κ. However,
we may also locally define the principal symbol σκ

pr(A) by taking the pullback
of the principal symbol of (6), which is well-defined on the cotangent bundle
T ∗U ′. Then we may defined a global principal symbol well-defined on T ∗M by
taking an atlas κi : Ui → Vi and partition of unity χi subordinate to U ′

i ⊂ Ui,
and defining

σpr(A) :=
∑

χiσ
κi
pr (A).

A pseudodifferential operator A of orderm over a closed manifoldM is called el-
liptic if there exists some C,M > 0 so that its principal symbol σpr(A) = a(x, ξ)
satisfies a(x, ξ) ≥ |ξ|m/M for all |ξ| > C. Fix an elliptic pseudodifferential op-
erator Λs ∈ Ψs

1,0(M) for s ∈ R. Then the Sobolev space of order s is given by
Hs(M) := Λ−1

s (L2(M)) ⊂ D′(M) which comes with inner product ⟨u, v⟩Hs :=
⟨Λsu,Λsv⟩L2 . These Sobolev spaces are designed so that any pseudodifferential
operator A of order m extends to a bounded operator A : Hs(M) → Hs−m(M).

We may alter the above theory to specify anisotropic pseudodifferential op-
erators and anisotropic Sobolev spaces, which have variable orders in differ-
ent directions. To specify this order, we take an order function m(x, ξ) ∈
S0(T ∗M) that is homogeneous of order 0 in ξ for |ξ| > 1. Then we may de-
fine anisotropic pseudodifferential operators of order m(x, ξ) in the same way
we defined pseudodifferential operators above, but replacing the constant m
with the variable m(x, ξ). By taking an elliptic pseudodifferential operator
Λm(·) of variable order m(x, ξ), we may define anisotropic Sobolev spaces as

Hm(·)(M) := Λ−1
m(·)(L

2(M)) ⊂ D′(M) which comes with natural inner product

⟨u, v⟩Hm(·) :=
〈
Λm(·)u,Λm(·)v

〉
L2 .

Finally, we review the definition of the wave front set. Recall that for u ∈ E ′(Rn),
a distribution of compact support, then u is smooth exactly when its Fourier
transform û is rapidly decreasing (i.e. a Schwartz function). That is, u fails to
be smooth because there are particular directions in frequency space in which
û fails to be rapidly decreasing. It is helpful to identify these directions, and
this is the idea of the wave front set. In fact, we may define the wave front
set on Rn using exactly this idea, then lift this to a manifold, but we choose to
write an equivalent coordinate-free definition using pseudodifferential operators.
Indeed, we define the wave front set of a distribution u ∈ D′(M) on a closed
Riemannian manifold M to be

WF(u) = {(x, ξ) ∈ T ∗M : ∀A ∈ Ψ0
1,0(M), Au ∈ C∞(M) =⇒ σpr(A)(x, ξ) = 0}.

Importantly, if WF(u) = ∅, then u ∈ C∞(M).
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3 The X-ray transform on Anosov manifolds

Consider a closed manifold M with Anosov flow generated by X, which will
have countable set G of closed orbits. Then we may generally define the X-ray
transform I : C0(M) → ℓ∞(G) so that for f ∈ C0(M) and γ ∈ G we set

If(γ) :=

∫ ℓ(γ)

0

f(φt(x))dt (7)

where ℓ(γ) is the period of γ and x ∈ γ is arbitrary. Then in the case of an
Anosov manifold M , we may write the X-ray transform I0 : C0(M) → ℓ∞(G)
defined in Section 1 as I0 = I ◦ π∗

0 . As recorded in the following theorem, this
operator is injective, and this document will largely focus on the techniques in
showing this injectivity.

Theorem 3.1. I0 is injective over Anosov manifolds of dimension at least 2.

Guillemin and Kazhdan [GK80b] showed injectivity for surfaces with strictly
negative curvature, Croke and Sharafutdinov [CS98] generalized this to higher
dimensional manifolds with non-positive sectional curvature, then Dairbekov
and Sharafutdinov [DS03] obtained injectivity of I0 for Anosov manifolds in
general. Below we will outline a proof of Theorem 3.1 for surfaces of strictly
negative curvature.

The strategy for each of these injectivity results is to study solutions to the
transport equation Xu = f where X is the generator of the geodesic flow over
SM . In particular, the strategy has two steps: first suppose I0f = 0 for f ∈
C∞(M) and argue this implies Xu = π∗

0f for some u ∈ C∞(SM). Second, use
the high regularity of u to show Xu = π∗

0f is only possible if f = 0. The first
step of obtaining a high regularity solution to the transport equation is achieved
with the following Liv̌sic theorem.

Theorem 3.2 (Liv̌sic Theorem). Let M be a closed manifold with transitive
Anosov flow generated by X and suppose f ∈ Cα(M) for α ∈ (0, 1) ∪ N ∪ {∞}
and If = 0. Then there exists u ∈ Cα(M) such that f = Xu.

Liv̌sic [Liv71] originally proved the Liv̌sic theorem in Hölder regularity α ∈
(0, 1), then Guillemin and Kazhdan [GK80a] proved smooth regularity in the
case of geodesic flows on surfaces of strictly negative curvature, and [dlLMM86]
proves smooth regularity in the case of general Anosov flow by using the Journé
Lemma [Jou86]. The second step in achieving injectivity is showing that a
smooth solution u ∈ C∞(SM) to the transport equation Xu = π0f forces
f = 0. This is achieved with the following L2 energy estimate called the Pestov
identity.

Theorem 3.3 (Pestov identity). For a closed surface M and u ∈ C∞(SM) we
have the equality

∥V Xu∥2L2(SM) = ∥Xu∥2L2(SM) + ∥XV u∥2L2(SM) − (KV u, V u)L2(SM) (8)
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where K denotes the Gaussian curvature of M .

Proof of Theorem 3.3. The Pestov identity is obtained by computing the quan-
tity ([XV, V X]u, u)L2(SM) in two different ways. First use repeated integration
by parts to compute:

([XV, V X]u, u) = ((XV V X − V XXV )u, u)

= −(V V Xu,Xu) + (XXV u, V u) = ∥V Xu∥2 − ∥XV u∥2.

Now compute ([XV, V X]u, u)L2(SM) by using the structure equations (1) to
rewrite

[XV, V X] = XV V X − V XXV

= V XV X + [X,V ]V X − V XV X − V X[X,V ]

= HVX − V XH

= V HX + [H,V ]X − V HX − V [X,H]

= −X2 + V KV.

Now use the above to write

([XV, V X]u, u) = (−X2u, u) + (V KV u, u) = ∥Xu∥2 − (KV u, V u).

The Pestov identity (8) is then obtained by setting these two expressions for
([XV, V X]u, u)L2(SM) equal.

The Pestov identity was first discovered in particular cases by Mukhometov
[Muh77, Muh81] and Amirov [Ami86], then Pestov and Sharafutdinov [PS88]
proved a version of the above Pestov identity in coordinates for arbitrary dimen-
sion, which was reformulated into a coordinate-free form by Knieper [Kni02].
Note the Liv̌sic theorem together with the Pestov identity quickly gives injec-
tivity of the X-ray transform for surfaces of strictly negative curvature.

Proof of Theorem 3.1 for negatively curved surfaces. Let M be a manifold of
strictly negative curvature and suppose f ∈ C∞(M) satisfies I0f = 0. Then
by the Liv̌sic theorem, there exists u ∈ C∞(SM) such that π∗

0f = Xu. Notice
V Xu = V π∗

0f = 0 because any pullback π∗
0f is constant over each fiber and for

negative curvature we have

∥XV u∥2L2(SM) − (KV u, V u)L2(SM) ≥ 0. (9)

Plugging this information into the Pestov identity yields ∥Xu∥L2(SM) ≤ 0.
Therefore we conclude π∗

0f = Xu = 0 and so f = 0.

In fact, (9) holds generally for Anosov surfaces as shown in [PSU14] using a
solution to the Riccati equation constructed by E. Hopf [Hop48], so the same
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argument applies in the Anosov case. The key input to the above argument is
the Liv̌sic theorem, which is technical to prove. Guillarmou [Gui17] recently
provided a microlocal proof of the Livšic theorem, which we build towards in
sections 4 and 5.

4 Meromorphic extension of Resolvents

Consider a closed manifold M with an Anosov flow φt generated by X. The
properties of this Anosov flow are then encoded in the spectrum of the operator
X. Consider the resolvents R±(z) := (z ± X)−1 of the forward and backward

Anosov flows, take f ∈ C∞(M), and consider the functions u
(z)
± := R±(z)f

which by definition are the solutions to the transport equation (z ±X)u
(z)
± = f

with attenuation z. Observe these solutions can be written explicitly for Re z
large by

R±(z)f = u
(z)
± =

∫ ∞

0

e−tzφ∗
∓tfdt. (10)

To see why the integral (10) converges for Re z large, note ∥φt∥L2→L2 ≤ C0e
Mt

by the semigroup property of the flow and taking C0 = supt∈[0,1] ∥φ∗
t ∥L2→L2 ,

for example. Then for Re z > M we can compute

∥R−(z)∥L2→L2 ≤
∫ ∞

0

e−tRe z∥φ∗
t ∥L2→L2dt ≤ C0

∫ ∞

0

et(M−Re z)dt ≤ C0

Re z −M
.

The same bound applies to R+(z) and we would like to meromorphically extend
these resolvents using the Analytic Fredholm Theorem, which we recall below
– see [Lef25] for a proof.

Theorem 4.1 (Analytic Fredholm Theorem). Take a domain U ⊂ C and sup-
pose A(z) : E1 → E2 is a holomorphic family of Fredholm operators over U
between Banach spaces. If A(z0) is invertible for any z0 ∈ U , we may conclude
A(z)−1 : E2 → E1 is a meromorphic family of bounded operators over U .

A first try is to consider the L2 spectrum by considering the space DL2(M) =
{u ∈ L2(M) : Xu ∈ L2(M)} designed so that we can consider the holomorphic
family of bounded maps z ± X : DL2(M) → L2(M) with codomain L2(M).
However, this does necessarily meromorphically extend. For example, in the case
the flow is volume-preserving, the L2 spectrum is computed to be the imaginary
axis σL2(X) = iR. The issue is that the operators z ± X : DL2(M) → L2(M)
are not Fredholm.

To obtain meromorphic extensions of the resolvents and consequently more spec-
tral information, Faure and Sjöstrand [FS11] constructed anisotropic Sobolev
spaces Hs

± finely tuned to the dynamics so that Hs
+ (resp. Hs

−) has microlocal
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regularity Hs (resp. H−s) in a conic neighborhood of E∗
s and microlocal reg-

ularity H−s (resp. Hs) in a conic neighborhood of E∗
u. Then define the space

DHs
±
= {u ∈ Hs

± : Xu ∈ Hs
±} and so that we can take z±X : DHs

±
→ Hs

± with
codomain an anisotropic Sobolev space. Importantly, Hs

± are chosen so these
maps are Fredholm over a larger domain, which yields meromorphic resolvents
over a larger domain. The construction of these anisotropic Sobolev spaces and
proof of the Fredholm property is technical and is beyond the scope of this
document, but we record this result below.

Theorem 4.2 (Faure–Sjöstrand [FS11]). There exist anisotropic Sobolev spaces
Hs

± such that the resolvents R±(z) : Hs
± → Hs

± extend meromorphically over
the domain {Re z > M − Cs} for some constants M and C > 0.

In fact, these anisotropic Sobolev spaces may be chosen so that Hs
+ ∩ Hs

− ⊂
Hs(SM) [Lef25]. At each z0 in the domain, this meromorphic extension promises
Laurent expansion

R±(z) = Rhol
± (z) +

N(z0)∑
k=1

(z ±X)k−1Π±
z0

(z − z0)k
(11)

where Π±
z0

:= 1
2πi

∫
γ
R±(ζ)dζ for small loop γ around z0 are the spectral projec-

tions. The range of these spectral projections is called the generalized resonant
states and is given by

Resk,∞± (z0) := ran(Π±
z0) = {u ∈ Hs

± : (z ±X)N(z0)u = 0}. (12)

The holomorphic part Rhol
± (z) of the resolvents has well understood wavefront

set by a result of Dyatlov-Zworski [DZ16]. In particular, if u ∈ C∞(M), then

WF(Rhol
+ (z)u) ⊂ E∗

u, WF(Rhol
− (z)u) ⊂ E∗

s . (13)

Next specialize to the case X generates a volume-preserving Anosov flow, which
includes geodesic flows over Anosov manifolds. Then by (10) we may compute
that for Re z > 0 we have ∥R±(z)∥L2→L2 ≤ 1/Re(z) and so the resolvents grow
like 1/z as z → 0, hence 0 is a simple pole; that is, R±(z) = Rhol

± (z) + Π±
0 /z.

In particular, (12) then implies ran(Π±
0 )Hs

±
= ker(X)Hs

±
. Note that using the

substitution w = −z we can compute

Π+
0 =

∫
γ

(z +X)−1dz =

∫
γ

(w −X)−1dw = Π−
0 . (14)

Additionally note the relationship (z +X)∗ = (z −X) implies R∗
+(z) = R−(z),

which gives the relationship (Rhol
+ )∗(0) = Rhol

− (0) where ∗ denotes the L2 adjoint.

This meromorphic extension of the resolvent provides new proof strategies in
dynamics. For example, recall a flow is ergodic if kerX|L2(M) = C, and a con-
sequence of this meromorphic extension is a new proof of ergodicity for volume-
preserving Anosov flows. Hopf proved ergodicity of geodesic flows over closed
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surfaces of strictly negative curvature, then Anosov generalized this “Hopf ar-
gument” to what is now called Anosov flows [Ano69]. Amazingly, however, this
spectral approach provides a new proof of ergodicity for Anosov flows [Lef25].

5 Guillarmou’s Π operator

Guillarmou [Gui17] introduced an important operator that provides a new mi-
crolocal proof of the Liv̌sic theorem. To motivate this operator, consider an
Anosov manifoldM and f ∈ C∞(SM) satisfying If = 0, and recall we are inter-
ested in finding high regularity solutions to the transport equationXu = f . Two
solution candidates are u± := ±R±(0)f , which are well-defined if

∫
SM

fdΣ = 0

because in this case the pole at 0 vanishes and so we can write u± = ±Rhol
± (0)f .

These solutions u± only have regularity Hs
± respectively. However, if these

solutions agree by

0 = u+ − u− = (Rhol
+ (0) +Rhol

− (0))f,

then the solution u+ = u− will have high regularity Hs
+∩Hs

− ⊂ Hs(SM) for any
s > 0. This motivates studying the kernel of the operator Π := Rhol

+ (0)+Rhol
− (0).

In general, consider a closed manifold M with Anosov flow φt preserving a
smooth volume form dµ and let X be the infinitesimal generator. Taking R±(z)
to be the meromorphic extension of the resolvents (z ± X)−1 as described in
Section 4, we may define Guillarmou’s Π operator given by the self-adjoint
operator Π := Rhol

+ (0) +Rhol
− (0), which we characterize the kernel of below.

Theorem 5.1 (Guillarmou [Gui17]). Let M be a closed manifold with X the
generator a volume preserving Anosov flow and take f ∈ Hs(M) for s > 0.

(a) If Πf = 0, then f = Xu+ v for u ∈ Hs(M) and v = Π+
0 f ∈ C.

(b) Conversely, if f = Xu+ v with u ∈ Hr(M) for any 0 < r ≤ s and v ∈ C,
then Πf = 0.

Proof. First suppose Πf = 0 and we consider the functions u± := ±Rhol
± (0)f

which are elements of Hs
± respectively. To study these functions, recall that

about 0 we have the Laurent expansions

(z ±X)−1 = R±(z) = Rhol
± (0) +

Π±
0

z
+O(z).

Multiplying both sides by z ±X and collecting like terms gives

±XRhol
± (0) = Id−Π±

0 = ±Rhol
± (0)X (15)

where the equalities on the left and right follow by multiplying z ± X on the
left and right respectively. Using the left equality gives Xu± = f − Π±

0 f , or

11



equivalently f = Xu± +Π±
0 f . Importantly, note the assumption implies

u+ − u− = Rhol
+ (0) +Rhol

− (0)f = Πf = 0

and so we conclude u+ = u−; call this function u, which is then an element
of Hs

+ ∩ Hs
− ⊂ Hs(M). Finally, recall Π+

0 f = Π−
0 f by (14), so set v = Π±

0 f
which is in Hs

+ ∩ Hs
− ⊂ Hs(M) and recall that by 0 a simple pole of R±(z),

we have (12) and so v ∈ kerX, which by ergodicity implies v ∈ C, proving
(a). Conversely suppose f = Xu+ v as in the hypotheses of (b) and first note
computing the difference of the equations in (15) and using Π+

0 = Π−
0 yields

XΠ = 0 = ΠX.

Next, use v is constant and (10) to explicitly compute R±(z)v = v/z for z > 0,
so Rhol

± (z)v ≡ 0 for Re z > 0 and hence for all z ∈ C. Thus Πv = 0 and so
Πf = Π(Xu+ v) = 0.

Notice Guillarmou’s Π operator allows us to strengthen the Liv̌sic theorem from
arbitrarily low Sobolev regularity to Sobolev regularity as high as f . Indeed,
take f ∈ Hs(M) and suppose we know f = Xu for u ∈ Hr(M) for any 0 < r ≤
s. Then Theorem 5.1 implies Πf = 0, which in turn implies f = Xu for u ∈
Hs(M). In particular, if f ∈ C∞(M) satisfies If = 0, then if we can show f =
Xu for u ∈ Hr(M) for any r > 0, we may conclude u ∈ C∞(M). For transitive
Anosov flows, we can get this initial low regularity for u by taking x0 ∈ M with
dense orbit, then defining u(φtx0) :=

∫ t

0
f(φsx0)ds on this dense orbit, and

using the Anosov closing lemma [KH95, Theorem 6.4.15] to argue this extends
with Hölder regularity to M [Lef25]. That is, Guillarmou [Gui17] provides a
microlocal proof of the Liv̌sic theorem for volume-preserving Anosov flows while
providing new Sobolev regularity results for the Liv̌sic theorem (although some
Sobolev regularity results were previous proved in [dlL01]). Note a microlocal
proof of the Liv̌sic theorem for general transitive Anosov flows was later given
in [GBL23], using the Journé’s lemma [Jou86] to get the initial low regularity
solution to the transport equation.

Now we revisit the question of injectivity of the X-ray transform over an Anosov
manifold M with flow generated by X. Let f ∈ C∞(M) with I0f = 0, then
by showing π∗

0f = Xu for u of low regularity, we get Ππ∗
0f = 0, which in turn

implies π∗
0f = Xu for u ∈ C∞(SM), then the Pestov identity implies f = 0.

Alternatively, we can interpret this proof of injectivity as factoring through the
Ππ∗

0 operator. That is, I0f = 0 implies Ππ∗
0f = 0, and we will soon see Ππ∗

0 is
injective (over functions with average value 0), giving f = 0.

We next extend the domain of this continuous operator Ππ∗
0 : C∞(M) →

D′(SM), which has adjoint π0∗Π : C∞(SM) → D′(M) by the self-adjointness
of Π, and this adjoint can be decomposed π0∗Π = π0∗R

hol
+ (0)+π0∗R

hol
− (0). Note

if u ∈ D′(SM) we have

WF(π0∗u) ⊂ {(x, ξ) ∈ T ∗M : ∃v ∈ SxM, ((x, v), dπ⊤
0 ξ, 0) ∈ WF(u)}.
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and by ker(dπ0) = V we have ((x, v), dπ⊤
0 ξ, 0) ∈ X∗ ⊕ H∗. However, it is an

important result of Klingenberg [Kli74] and with a streamlined proof given by
[Mn87] that V∩(Eu⊕X) = {0}, which implies (X∗⊕H∗)∩E∗

u = {0} and therefore
WF(Rhol

+ (0)f) = ∅ by (13). The same argument applies to Rhol
+ (0)f and so this

adjoint is in fact continuous π0∗Π : C∞(SM) → C∞(M), which implies we can
extend the domain of our operator Ππ∗

0 : D′(M) → D′(SM). In fact, a similar
analysis using properties of the anisotropic Sobolev spaces gives that we may
extend the domain to get a continuous map Ππ∗

0 : H−s(M) → H−s(SM) for
all s > 0 [Gui17]. Furthermore, this operator is injective over functions with 0
spectral projection (i.e. over functions with average value 0 when the Anosov
flow is mixing):

Theorem 5.2. If M is an Anosov manifold, then Ππ∗
0 : H−s(M) → H−s(SM)

has kernel C and is injective over functions with 0 spectral projection.

First we introduce Guillarmou’s normal operator Π0 := π0∗Ππ
∗
0 , which Guil-

larmou [Gui17] showed to be an elliptic pseudodifferential operator of order −1
using key wavefront computations from Dyatlov-Zworski [DZ16] of the resol-
vents Rhol

± (z). In the case of the X-ray transform I0 over simple manifolds,
there is a related normal operator I∗0 I0 that has the same principle symbol as
Π0, so Π0 is the analog of I∗0 I0 in the Anosov case.

Proof of theorem 5.2 for surfaces of negative curvature. Recall from the proof
of Theorem 5.1 that Ππ∗

0v = 0 for any v ∈ C, accounting for the nontrivial
kernel. Thus consider f ∈ C∞(M) with Ππ∗

0f = 0 and normalized so that
Π+

0 f = 0, so by Theorem 5.1 we have Ππ∗
0f = Xu for u ∈ C∞(SM). But then

using the Pestov identity 3.3 in the same way as in the proof of Theorem 3.1
implies f = 0. If we only have f ∈ H−s(M), then note Ππ∗

0f = 0 implies
Π0f = π0∗Ππ

∗
0f = 0 and so Π0 an elliptic pseudodifferential operator implies

f ∈ C∞(M).

The more general theorem simply follows from a more general Pestov identity
[Lef25].

6 Research Directions

6.1 Results

We consider closed surfaces M of constant negative curvature and let X gen-
erate the (Anosov) geodesic flow. Recall we can prove the injectivity of I0
by factoring through Ππ∗

0 . That is, if f ∈ C∞(M) has average value 0, then
I0f = 0 implies Ππ∗

0f = 0, which implies f = 0. The main result listed below
is an explicit inversion formula for Ππ∗

0 on closed surfaces of constant negative
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Gaussian curvature K < 0. In fact, the result is slightly stronger, for we invert
Guillarmou’s normal operator Π0 = π0∗Ππ

∗
0 on such surfaces using the operator

SKf :=

∫
SxM

∫ ∞

0

e−
√
−K·tf(γx,v(t))dtdSx(v), f ∈ C∞

c (M) (16)

where γx,v(t) denotes the unique geodesic onM satisfying γx,v(0) = x, γ̇x,v(0) =
v, and the measure dSx on fiber SxM is defined as in Section 2.1. Applying
this operator followed by the Laplace-Beltrami operator ∆ gives the following
inversion formula.

Theorem 6.1 (R.). Given a smooth function f with average value zero over a
connected closed surface M of constant curvature K < 0 we have the inversion
formula

∆SKΠ0f = −8π2f. (17)

Note the above theorem reduces the problem of reconstructing f from I0f to
the problem of constructing Π0f from I0f for surfaces of constant negative
curvature. This X-ray transform on Anosov manifolds is analogous to the X-
ray transform on manifolds with boundary defined by integrating over geodesics
between the boundary and the Π0 operator is analogous to the X-ray normal
operator in this boundary case. We prove this by first inverting an “attenuated

normal operator” Π
(z)
0 := π0∗Π

(z)π∗
0 where the “attenuated Π operator” Π(z) :

C∞(SM) → C∞(SM) is defined by

Π(z) :=

∫
R
e−|t|zφ∗

t dt, Re z > 0. (18)

This operator converges weakly to Guillarmou’s Π operator as the attenuation
coefficient z approaches 0 when acting on functions with average value zero.
That is, over an Anosov manifold M with f ∈ C∞(SM) we have

lim
z→0

〈
Π(z)f, ψ

〉
= ⟨Πf, ψ⟩ , ψ ∈ C∞(SM). (19)

provided
∫
SM

fdΣ = 0 for the Sasaki volume form dΣ as defined in Section 2.1.
The distributional pairing ⟨·, ·⟩ above is also with respect to the Sasaki volume

form. To invert this Π
(z)
0 operator, we extend the operator SK of (16) to the

operator

S
(z)
K f :=

∫
SxM

∫ ∞

0

e−(z+
√
−K)·tf(γx,v(t))dtdSx(v), f ∈ C∞

c (M). (20)

Furthermore, we will write S(z) = S
(z)
−1 and S = S−1. Before inverting Π

(z)
0

on closed surfaces of constant negative curvature, we first obtain the following
inversion formula on the Poincaré disk, which is interesting in its own right
and can be interpreted as a reconstruction formula for the “attenuated X-ray
transform” operator Π(z)π∗

0 .
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Theorem 6.2 (R.). Given a compactly supported smooth function f over the
Poincaré disk D, for any Re(z) > 0 we have the inversion formula

(∆− z(z + 1))S(z)Π
(z)
0 f = −8π2f. (21)

The above theorem and corresponding proof is an extension of Helgason’s inver-
sion formula for the unattenuated X-ray transform on the Poincaré disk [Hel80,
Theorem 1.14, Chapter III]. By descending to quotients of the Poincaré disk
and normalizing with respect to curvature, we obtain the following inversion
formula on closed manifolds of constant negative curvature. The theorem below
is an intermediate step to proving Theorem 6.1, but can be interpreted as a
reconstruction formula for the attenuated X-ray transform operator Π(z)π∗

0 .

Theorem 6.3 (R.). Given a smooth function f over a connected closed surface
M of constant curvature K < 0, then for Re(z) > 0 we have the inversion
formula

(∆− z(z +
√
−K))S

(z)
K Π

(z)
0 f = −8π2f. (22)

With the above theorem we can then obtain Theorem 6.1 by taking the limit
z → 0, which one may expect by (19). However, verifying the continuity at 0
requires some work using microlocal techniques and transversality.

6.2 Future Work

Recall that there is an X-ray transform I2 on symmetric 2-tensors that has
applications to marked length rigidity and spectral rigidity, and so a natural
question is to generalize the above inversion formulas to the case of symmet-
ric covariant m-tensors Sm(SM∗). Given a tensor α ∈ Sm(SM∗), define the
pullback π∗

mα(v) := α(v, · · · , v), then define the X-ray transform on tensors by
Im := I ◦ π∗

m. Now we can state our question.

Question 1. How can the inversion formula of Theorem 6.1 generalize to the
X-ray transform Im on symmetric m-tensors?

A leader in the field, Thibault Lefeurve, asked about the the case of I2 above
with some application in mind after seeing a preprint of the paper containing
the results in Section 6.1. Another natural question is to generalize these results
to non-constant curvature.

Question 2. How can the inversion formula of Theorem 6.1 generalize to non-
constant curvature?
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Note that even in the case of simple manifolds, a nice inversion formula is only
known in the case of constant curvature surfaces. However, this inversion for-
mula takes the form f +W 2f = EI0f for a certain inversion operator E that
can be found in [PSU23] and a smoothing operator W that is 0 for constant
curvature. Thus this provides an approximate inversion formula in the case of
non-constant curvature and furthermore, Krishman [Kri10] showed the invert-
ibility of the operator Id+W 2 when the metric is in a small C3 neighborhood
of a constant curvature metric, giving exact inversion formulas in such cases.
Perhaps the Theorem 6.1 inversion formula can be formulated to include this
same smoothing operator W , giving an approximate inversion formula for non-
constant curvature.

Recall the inversion formula for Π0f reduces the question of reconstructing
f from I0f to the question of reconstructing Π0f from I0f . Thus a natural
question is to complete this second step to achieve an inversion formula for I0.

Question 3. How can we reconstruct Π0f from I0f on a hyperbolic surface M?

If possible, answering this question would likely require studying a particular
hyperbolic surface M in which the structure of the closed geodesics are well un-
derstood and finding a method to find explicit closed geodesics that approximate
orbits as the Anosov closing lemma promises.

Next, there is the question of extending the theory of the geodesic flow over
an Anosov manifolds to more general flows such as Anosov magnetic flows over
a surface, which represents the dynamics of a charged particle of unit mass
and charge under a magnetic field, and is defined on the cotangent bundle
π : T ∗M →M of a closed surfaceM as follows. First, consider the Hamiltonian
H = 1

2gx(ξ, ξ) defined over T ∗M (which is the same Hamiltonian as the geodesic
flow). However, now consider the twisted symplectic form ωσ := ωcan − π∗σ
where ωcan is the canonical symplectic form, and σ is a 2-form representing
the magnetic field. This defines a Hamiltonian system over T ∗M , and the
Riemannian metric allows us to identify this with TM , and these dynamics can
then be restricted to the unit tangent bundle SM .

Given an Anosov magnetic flow over the unit tangent bundle π0 : SM → M ,
we may define the Guillarmou’s Π operator of this Anosov flow, then we may
define a normal operator Π0 := π0∗Ππ

∗
0 , and it is natural to examine if this

normal retains the nice properties from the case of the geodesic flow.

Question 4. Is the normal operator Π0 a pseudodifferential operator of order
−1 in the case of an Anosov magnetic flow over a Riemannian manifold? What
is the principal symbol?

The magnetic flow is prototype for volume-preserving Anosov flows and offer
more complexity than simply geodesic flows, and answering the above question
is the first step to further generalizing some of Guillarmou’s techniques.
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[Jou86] Jean-Lin Journé. On a regularity problem occurring in connection
with Anosov diffeomorphisms. Comm. Math. Phys., 106(2):345–
351, 1986.

[Kac66] Mark Kac. Can one hear the shape of a drum? Amer. Math.
Monthly, 73(4):1–23, 1966.

[Kat88] Anatole Katok. Four applications of conformal equivalence to geom-
etry and dynamics. Ergodic Theory Dynam. Systems, 8∗:139–152,
1988.

[KH95] Anatole Katok and Boris Hasselblatt. Introduction to the mod-
ern theory of dynamical systems, volume 54 of Encyclopedia of
Mathematics and its Applications. Cambridge University Press,
Cambridge, 1995. With a supplementary chapter by Katok and
Leonardo Mendoza.

[Kli74] Wilhelm Klingenberg. Riemannian manifolds with geodesic flow of
Anosov type. Ann. of Math. (2), 99:1–13, 1974.

18



[Kni02] Gerhard Knieper. Hyperbolic dynamics and Riemannian geometry.
In Handbook of dynamical systems, Vol. 1A, pages 453–545. North-
Holland, Amsterdam, 2002.

[Kri10] Venkateswaran P Krishnan. On the inversion formulas of pestov
and uhlmann for the geodesic ray transform. 2010.

[Lef25] Thibault Lefeuvre. Microlocal analysis in hyperbolic dynamics and
geometry. 2025. preprint at https://thibaultlefeuvre.blog/

microlocal-analysis-in-hyperbolic-dynamics-and-geometry-2/.

[Liv71] A. N. Livsic. Certain properties of the homology of Y -systems. Mat.
Zametki, 10:555–564, 1971.
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