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1 Introduction

Consider a closed Riemannian manifold M with set G of unit-speed closed
geodesics. The X-ray transform Iy : C°(M) — (°°(G) is given by integrat-
ing a given smooth function f over every closed geodesic v € G:

£(y)
(Tof)(7) = / FO(t))dt

where £(vy) denotes the length of 4. A natural question is the injectivity of
this X-ray transform: do the integral values over all closed geodesics uniquely
identify the function? We will see the answer depends on the dynamics of the
geodesic flow over the manifold, which in turn depends on the geometry of the
manifold M.

As a first example, we consider the case of the X-ray transform over the sphere
S?, which was originally studied by Funk [Funl3] and is often called the Funk
Transform. In this case, the set of closed geodesics G over S? are all the great
circles. Is the X-ray transform over S? injective? Note any function f € C°°(S?)
that is odd, meaning f(—x) = —f(x), will satisfy Iof = 0. As there are many
nonzero odd functions, this demonstrates the X-ray transform is not injective
over the sphere.

Next consider the example of a closed hyperbolic surface H/T' where H is the
hyperbolic half-plane of constant Gaussian curvature —1, and I' is a discrete
group acting freely and properly on H. In this case, the collection G of closed
geodesics on H/T" is significantly more complex and chaotic, but G will be count-
able with and contain a unique closed geodesic in each free homotopy class. It
turns out the X-ray transform over H/T is injective and much of this document
is dedicated to partially explaining why. A key distinction between the case of
S? and the case of H/T is that geodesics over negatively curved manifolds have
more chaotic behavior than geodesics over positively curved manifolds. We will
see this key property is that H/T has an Anosov metric, meaning the geodesic
flow is sufficiently chaotic and will be precisely defined in Section [2.2] and in
fact Iy is injective for all Anosov manifolds.



The question of injectivity of the X-ray transform over closed Anosov manifolds
has a few notable applications and historic motivations. First, given such a
closed Anosov manifold M, this question is closely related to the problem of
marked length rigidity; that is, to what extend does the length spectrum L,
which encodes the lengths of all closed geodesics, determine the underlying Rie-
mannian metric g? The Burns-Katok conjecture [BK85] is that for any two
Anosov metrics g1, g2 giving the same length spectrum Ly, = Lg,, then there
exists a diffeomorphism ¢ isometric to the identity such that ¢*g; = go. This
conjecture was first proven true for conformal metrics [Kat88], then for nega-
tively curved surfaces [Cro90, [Ota90], when one of the metrics is locally sym-
metric and the other is negatively curved [Ham99], then for negatively curved
metrics close together [GLI9], and most recently for Anosov surfaces [GLP23].
Importantly, the local problem of infinitesimal marked length rigidity — if a small
perturbation of an Anosov metric is given by the pullback of such an isotopy —
is equivalent to the injectivity of an X-ray transform I on symmetric 2-tensors.
While we will discuss the injectivity of the X-ray transform I on functions for
simplicity, much of the theory caries over to Is.

In fact, the injectivity of the X-ray transform is related to Kac’s famous question
“can one hear the shape of a drum?” [Kac66], which is the question of spectral
rigidity: does the Laplace spectrum of a manifold determine the underlying
Riemannian metric up to isometry? It was conjectured that perhaps the answer
is positive for Anosov manifolds, but Vigneras [Vig80] found a pair of isospectral
hyperbolic surfaces that are not isometric. However, there is still the question of
infinitesimal spectral rigidity on Anosov manifolds: must any isospectral family
of perturbations of a metric be given by the pullbacks of an isotopy? The
answer is yes [GK80b [CS98| [GL.19]: infinitesimal spectral rigidity is implied by
infinitesimal marked length rigidity, which is in turn implied by the injectivity
of I, which is proven by similar techniques to the case of Iy, which hopefully
provides sufficient reason to learn some of these techniques in this document.

While this document will focus on the injectivity of the X-ray transform over
Anosov manifolds, there is a related X-ray transform on manifolds with bound-
ary in which the X-ray data is given by the integrals of an unknown function
over all geodesics that begin and terminate at the boundary. In this case, the
X-ray transform is injective so long as the manifold M with boundary is simple,
meaning M is simply connected and has no conjugate points. The study of the
X-ray transform on simple manifolds and the X-ray transform on Anosov mani-
folds are often in analogy and structurally similar. For example, the question of
injectivity of the simple manifold X-ray transform on 2-tensors follows naturally
from the widely studied boundary rigidity inverse problem in a similar way the
question of injectivity of I on Anosov manifolds follows from the question of
marked length rigidity. In fact, it was recently proven in [EL24] that spectral
rigidity for Anosov manifolds implies boundary rigidity for certain manifolds
(including simple manifolds) by using [CEG23] to embed these manifolds with
boundary into Anosov manifolds.



2 Preliminaries

2.1 Unit tangent bundle and geodesic flow

For any Riemannian manifold (M, g), the unit tangent bundle SM = {(z,v) €
TM :|v|, =1} is all unit-length elements of the tangent bundle, which inherits
the natural projection my : SM — M. The unit tangent bundle is the phase
space for the geodesic flow ¢, : SM — SM given by ¢ (z,v) = (Vz,0(t), Y20 (1))
where v, ., (t) denotes the unique geodesic with initial position 7, ,(0) = = and
initial velocity 4,,,(0) = v. We denote by X the smooth vector field over SM
generating this geodesic flow. The dynamics of this geodesic flow plays a crucial
role in studying the X-ray transform, so we discuss the geometry of its phase
space SM.

The unit tangent bundle SM inherits a natural metric from M, which we now
describe. Note smooth curves Z : (—e,e) — SM over the unit tangent bundle
take the form Z(t) = (a(t), W(t)) for a smooth curve «: (—&,¢) — M over the
base manifold together with a smooth vector field W(t) € S M over a(t).
Thus we may think of a tangent vector § € T(, ,)SM as the velocity vector of
such a curve £ = %L::o Z(t) so that a(0) = x and W(0) = v. Now note the
Levi-Civita connection V and corresponding covariant derivative D, along a.(t)
allow for the natural identification
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where the connection map K : TSM — TM is given by K& := D, W|,_,. Then
the metric g on M naturally induces the Sasaki metric G on SM by

(€& m)g = (dmo, dmon), + (K& Kn),,

for §,m € T(4,,)SM. In fact, defining the vertical bundle V := ker dmp and the
bundlejﬁl = kerK we have a splitting TSM =V & H and linear isomorphisms
dng : H — TM and K : V — TM onto their images. The Sasaki metric is
then defined by declaring these isomorphisms to be isometries and declaring the
splitting TSM =V @ H to be orthogonal. Additionally, note the definition of
the Levi-Civita connection ensures the generator X of the geodesic flow satisfies
X € kerK = H and so we make the orthogonal decomposition H = X & H into
the flow direction X := RX and the horizontal bundle H and so we have the
orthogonal decomposition

MmDmmmﬂ)=wmam>

t=0

TSM=XoHeV.

In the case M is a surface, the subbundles X, H, and V are rank 1 and spanned by
the unit-length smooth vector fields X, H, V respectively. By local coordinate
computations, we may compute the Lie algebra of this frame, often called the
structure equations:

X,V]=H, [HV]=-X, [X H =-KV. (1)



where K denotes the Gaussian curvature function. Note that by Liouville’s
theorem we have div X = 0. We also have div H = divV = 0 and so we have
the integration by parts formulas

(Xu,w)r2(sary = —(u, Xw) 2 (sar)
(Hu, w)L2(SM) = —(u, Hw)LZ(SM)
(Vu,w)p2(sary = —(u, V) p2(sar-

See [PSU23| for more details.

2.2 Anosov Flows and Manifolds

The reason the X-ray transform on S? is not injective while the X-ray transform
on a hyperbolic surface D/T is injective is because the geodesic flow over surfaces
of negative curvature has chaotic properties such as ergodicity. In fact, Anosov
[Ano69] first proved the geodesic flow over manifolds with negative sectional
curvature is ergodic for arbitrary dimension by showing the flow has a key
property, which is now referred to as the Anosov property. This Anosov property
is the key property that allows for proving injectivity of the X-ray transform
via microlocal techniques. Consider a compact manifold M with flow ¢; and
infinitesimal generator X. The flow ¢; is Anosov if there is a continuous and
flow-invariant splitting of the tangent space

TM=RX®E,®E,

into the flow direction, the stable bundle, and the unstable bundle respectively
such that given an arbitrary metric |- | on M there exists constants C, A > 0 so
that for all t > 0

|dgs(v)| < Ce |v|  for v € E,
|dp_(v)| < Ce M| for v € E,.

That is, Anosov flows have a strong sensitivity to initial conditions at every
point — a small perturbation in a non-flow direction will result in a drastically
different trajectories in either the forward or backward flow direction. To apply
the microlocal tools of Section we are interested in the dual splitting

T"M=E;®E @ E; (2)

defined so that ES(Es ® E,) =0, EX(E; ®RX) =0, and EX(E, ® RX) = 0.
For all Anosov flows, the collection of points belonging to periodic orbits is
dense in M. Often times, flows will preserve a volume form p (for instance, any
Hamiltonian system preserves the Liouville volume form) in which case the flow
is called volume preserving. Any volume preserving Anosov flow is topologically
transitive, meaning there exists a point with dense orbit, and ergodic, meaning
ker X| L2 contains only the constants. We are interested in the geodesic flow
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w¢ : SM — SM over a Riemannian manifold M, which is a volume preserving
flow by taking the Liouwville form d%, defined as the volume form induced by the
Sasaki metric on SM. If this flow is Anosov, we say M is an Anosov manifold,
which includes all manifolds with strictly negative sectional curvature. In this
case, there is a unique periodic orbit in each free homotopy class of M. For
proofs of the above claims, see [Lef25 Chapter 8.

2.3 Microlocal tools

In the past fifteen years, techniques from microlocal analysis have been applied
to the study of the dynamics of Anosov flows with much success, including
results on the injectivity of the X-ray transform. Due to the dual splitting ,
it is often required to treat different direction of the cotangent bundle of the
phase space differently, and microlocal analysis is precisely the tool for this. We
review some of the relevant notions from microlocal analysis here.

We will always work over a closed Riemannian manifold M with metric g. The
space of distributions D'(M) over M is the dual space of continuous linear
functionals C*°(M) — C and is equipped with the weak-star topology of the
standard seminorm topology on C°°(M). Recall a pseudo-differential operator of
order m over an open subset X C R" is a linear operator A : C°(X) — C(X)
defined using the Fourier transform by

~

Af = Op(a)f = (2m) " / e €a(z,€) flx, €)de (3)

n

where a(z, &) € C°(T*X) is a symbol of order m, meaning for some p,d € [0, 1]
it satisfies the bound

L0 (. €)| < Cla g (g 01PH910. @

We denote by S (T*X) the class of all symbols satisfying and we write
UTs(X) = {Op(a) : a € S)5(T*X)} to denote the corresponding class of pseu-
dodifferential operators. It is most common to take p = 1 and 6 = 0, but we will
need more general p and §. Note, for example, every differential operator of order
m is a pseudodifferential operator of order m for any p, § € [0, 1]. Each pseudod-
ifferential operator A = Op(a) has a well-defined full symbol og(A) = a, but
unfortunately this full symbol is not invariant under a change of coordinates.
However, the leading part of this full symbol is called the principal symbol which
is well-defined on the cotangent bundle and is defined as the equivalence class
under addition

op(A) € ST5(T*X) /S5 G (T X). (5)

Over a closed Riemannian manifold M of dimension n, we say a linear operator
A C®(M) — C*(M) is a pseudodifferential operator of order m if for any
coordinate chart x : U — V for U C M, V C R™ and bump functions ¢, €



C(U) identically 1 on U’ C U, we have that
(k1) YAgr* € W'5(R™). (6)

where ¥ and ¢ are multiplication operations in the above composition. We
denote by W7 (M) the space of pseudodifferential operators over M, which again
includes differential operators of order m over M. We may locally define the
(full) symbol of;,(A) of a pseudodifferential operator A by taking the pullback
of the symbol of @ although this depends on the coordinate chart x. However,
we may also locally define the principal symbol O’Sr(A) by taking the pullback
of the principal symbol of @, which is well-defined on the cotangent bundle
T*U’. Then we may defined a global principal symbol well-defined on T*M by
taking an atlas k; : U; — V; and partition of unity x; subordinate to U, C U,
and defining

ope(A) =Y xiofi(A).

A pseudodifferential operator A of order m over a closed manifold M is called el-
liptic if there exists some C, M > 0 so that its principal symbol op, (A) = a(x, §)
satisfies a(x, &) > |¢|™/M for all |{] > C. Fix an elliptic pseudodifferential op-
erator A, € Ui ,(M) for s € R. Then the Sobolev space of order s is given by
H*(M) == A;Y(L*(M)) C D'(M) which comes with inner product (u,v) . =
(Asu, Agv), .. These Sobolev spaces are designed so that any pseudodifferential
operator A of order m extends to a bounded operator A : H*(M) — H*~™(M).

We may alter the above theory to specify anisotropic pseudodifferential op-
erators and anisotropic Sobolev spaces, which have variable orders in differ-
ent directions. To specify this order, we take an order function m(x,§) €
SO(T*M) that is homogeneous of order 0 in & for || > 1. Then we may de-
fine anisotropic pseudodifferential operators of order m(x,£) in the same way
we defined pseudodifferential operators above, but replacing the constant m
with the variable m(x,&). By taking an elliptic pseudodifferential operator
Ay of variable order m(z,&), we may define anisotropic Sobolev spaces as
H™O(M) = A;nl(,)(LQ(M)) C D'(M) which comes with natural inner product

(U, ) grmcy = <Am(‘)u’Am(-)U>L2'

Finally, we review the definition of the wave front set. Recall that for u € £'(R"),
a distribution of compact support, then u is smooth exactly when its Fourier
transform w is rapidly decreasing (i.e. a Schwartz function). That is, u fails to
be smooth because there are particular directions in frequency space in which
u fails to be rapidly decreasing. It is helpful to identify these directions, and
this is the idea of the wave front set. In fact, we may define the wave front
set on R™ using exactly this idea, then lift this to a manifold, but we choose to
write an equivalent coordinate-free definition using pseudodifferential operators.
Indeed, we define the wave front set of a distribution v € D'(M) on a closed
Riemannian manifold M to be

WEF(u) = {(2,£) € T*M : VA € ¥} ((M), Au € C®(M) = op,(A)(z, &) = 0}.
Importantly, if WF(u) = @, then u € C*°(M).



3 The X-ray transform on Anosov manifolds

Consider a closed manifold M with Anosov flow generated by X, which will
have countable set G of closed orbits. Then we may generally define the X-ray
transform I : C°(M) — £>°(G) so that for f € CY(M) and v € G we set

£(y)
If(y) = / f(e(a))dt (7)

where £(v) is the period of v and x € ~ is arbitrary. Then in the case of an
Anosov manifold M, we may write the X-ray transform Iy : C°(M) — £>°(G)
defined in Section |I| as Ip = I om. As recorded in the following theorem, this
operator is injective, and this document will largely focus on the techniques in
showing this injectivity.

Theorem 3.1. I is injective over Anosov manifolds of dimension at least 2.

Guillemin and Kazhdan [GK80b] showed injectivity for surfaces with strictly
negative curvature, Croke and Sharafutdinov [CS98] generalized this to higher
dimensional manifolds with non-positive sectional curvature, then Dairbekov
and Sharafutdinov [DS03] obtained injectivity of Iy for Anosov manifolds in
general. Below we will outline a proof of Theorem for surfaces of strictly
negative curvature.

The strategy for each of these injectivity results is to study solutions to the
transport equation Xu = f where X is the generator of the geodesic flow over
SM. In particular, the strategy has two steps: first suppose Ipf = 0 for f €
C° (M) and argue this implies Xu = 7§ f for some u € C*°(SM). Second, use
the high regularity of u to show Xu = 7 f is only possible if f = 0. The first
step of obtaining a high regularity solution to the transport equation is achieved
with the following Livsic theorem.

Theorem 3.2 (Livsic Theorem). Let M be a closed manifold with transitive
Anosov flow generated by X and suppose f € C*(M) for a € (0,1) UNU {oo}
and If =0. Then there exists u € C*(M) such that f = Xu.

Livsic [Liv7l] originally proved the Livsic theorem in Holder regularity a €
(0,1), then Guillemin and Kazhdan [GK80a] proved smooth regularity in the
case of geodesic flows on surfaces of strictly negative curvature, and [dILMMS6]
proves smooth regularity in the case of general Anosov flow by using the Journé
Lemma [Jou86]. The second step in achieving injectivity is showing that a
smooth solution u € C*(SM) to the transport equation Xu = mof forces
f = 0. This is achieved with the following L? energy estimate called the Pestov
identity.

Theorem 3.3 (Pestov identity). For a closed surface M and v € C*°(SM) we
have the equality

||VXUH%2(SM) = ||XUH%2(SJVI) + ||XVU||2L2(SM) — (KVu, VU)L?(SM) (8)



where K denotes the Gaussian curvature of M.

Proof of Theorem[3.3 The Pestov identity is obtained by computing the quan-
tity ([XV,VX]u,u)r2(sar) in two different ways. First use repeated integration
by parts to compute:

([XV,VX]u,u) = (XVVX = VXXV)u,u)
= —(VVXu, Xu) + (XXVu,Vu) = [|[VXul* - || X Vul?

Now compute ([XV,V X]u,u)r2(spr) by using the structure equations to
rewrite

XV, VX]=XVVX - VXXV
=VXVX+[X,VIVX - VXVX - VX[X,V]
—HVX -VXH
=VHX +[H,V]X -VHX — V[X, H]
= -X?>4+VKV.

Now use the above to write
((XV, VXJu,u) = (=X ?u,u) + (VEVu,u) = || Xul]* — (KVu, Vu).

The Pestov identity is then obtained by setting these two expressions for
([)(VY7 VX]U,’U/)Lz(SM) equal, 0

The Pestov identity was first discovered in particular cases by Mukhometov
[Muh77, Muh81] and Amirov [Ami86], then Pestov and Sharafutdinov [PS88]
proved a version of the above Pestov identity in coordinates for arbitrary dimen-
sion, which was reformulated into a coordinate-free form by Knieper [Kni02].
Note the Livsic theorem together with the Pestov identity quickly gives injec-
tivity of the X-ray transform for surfaces of strictly negative curvature.

Proof of Theorem[3.1] for negatively curved surfaces. Let M be a manifold of
strictly negative curvature and suppose f € C*(M) satisfies Iyf = 0. Then
by the Livsic theorem, there exists u € C°°(SM) such that n§f = Xu. Notice
VXu=Vnr§f =0 because any pullback 7 f is constant over each fiber and for
negative curvature we have

IXVullZz 50y — (KVu, V) p2sary > 0. (9)

Plugging this information into the Pestov identity yields || Xwu||z2(sary < 0.
Therefore we conclude 7§ f = Xu =0 and so f = 0. O

In fact, @ holds generally for Anosov surfaces as shown in [PSUI14] using a
solution to the Riccati equation constructed by E. Hopf [Hop48], so the same



argument applies in the Anosov case. The key input to the above argument is
the Livsic theorem, which is technical to prove. Guillarmou [Guil7] recently
provided a microlocal proof of the Livsic theorem, which we build towards in
sections @] and

4 Meromorphic extension of Resolvents

Consider a closed manifold M with an Anosov flow ¢; generated by X. The
properties of this Anosov flow are then encoded in the spectrum of the operator
X. Consider the resolvents Ry (z) = (z & X)~! of the forward and backward

Anosov flows, take f € C°°(M), and consider the functions ugf) = Ry(2)f

which by definition are the solutions to the transport equation (z £ X )ugf ) = f
with attenuation z. Observe these solutions can be written explicitly for Re z
large by

Re(2)f = uf) = / e~ gt ft. (10)
0

To see why the integral converges for Re z large, note ||¢¢|| 22 < CoeM?t
by the semigroup property of the flow and taking Co = sup,cio 1) |7 |22 L2,
for example. Then for Re z > M we can compute

[e'e) CO

IR_(2)|| L2 L2 s/o e 2o | L2 edt < Co/O et MR gt < Res_ I

The same bound applies to R4 (z) and we would like to meromorphically extend
these resolvents using the Analytic Fredholm Theorem, which we recall below
— see [Lef25] for a proof.

Theorem 4.1 (Analytic Fredholm Theorem). Take a domain U C C and sup-
pose A(z) : E1 — FEs is a holomorphic family of Fredholm operators over U
between Banach spaces. If A(zg) is invertible for any zo € U, we may conclude
A(2)7Y: By — Ey is a meromorphic family of bounded operators over U.

A first try is to consider the L? spectrum by considering the space Dr2my =
{u€ L*(M): Xu e L?*(M)} designed so that we can consider the holomorphic
family of bounded maps z + X : Dy2(ny) — L*(M) with codomain L?(M).
However, this does necessarily meromorphically extend. For example, in the case
the flow is volume-preserving, the L? spectrum is computed to be the imaginary
axis o2(X) = iR. The issue is that the operators z + X : Dp2(pgy) — L*(M)
are not Fredholm.

To obtain meromorphic extensions of the resolvents and consequently more spec-
tral information, Faure and Sjostrand [FS11] constructed anisotropic Sobolev
spaces H3 finely tuned to the dynamics so that H7 (resp. H?®) has microlocal



regularity H® (resp. H®) in a conic neighborhood of E* and microlocal reg-
ularity H~*® (resp. H®) in a conic neighborhood of E. Then define the space
Dp; ={u € Hi : Xu € Hi} and so that we can take 2 £ X : Dy; — Hi with
codomain an anisotropic Sobolev space. Importantly, Hf are chosen so these
maps are Fredholm over a larger domain, which yields meromorphic resolvents
over a larger domain. The construction of these anisotropic Sobolev spaces and
proof of the Fredholm property is technical and is beyond the scope of this
document, but we record this result below.

Theorem 4.2 (Faure-Sjostrand [FS11]). There exist anisotropic Sobolev spaces
H3 such that the resolvents Ry(z) : Hy — HZ extend meromorphically over
the domain {Rez > M — Cs} for some constants M and C > 0.

In fact, these anisotropic Sobolev spaces may be chosen so that Hf N H® C
H5(SM) [Lef25]. At each zg in the domain, this meromorphic extension promises
Laurent expansion

N(zo0)

z 4 X)F-IE
Rz = R+ Y CEN T
k=1

(2 — 29)*

(11)

where HZJE0 = % J., R+(¢)d¢ for small loop « around z( are the spectral projec-
tions. The range 0¥ these spectral projections is called the generalized resonant

states and is given by
Res'™ (29) = ran(llL) = {u € HY : (2 £ X)N*)y = 0}. (12)

The holomorphic part R1°!(z) of the resolvents has well understood wavefront
set by a result of Dyatlov-Zworski [DZ16]. In particular, if u € C°°(M), then

WF (R (2)u) C B, WF (R (2)u) C EZ. (13)

Next specialize to the case X generates a volume-preserving Anosov flow, which
includes geodesic flows over Anosov manifolds. Then by we may compute
that for Rez > 0 we have ||R4(2)||r2—r2 < 1/Re(z) and so the resolvents grow
like 1/z as z — 0, hence 0 is a simple pole; that is, Re(z) = RE(z) + I3 /2.
In particular, then implies ran(HOi)Hi = ker(X)Hi. Note that using the
substitution w = —z we can compute

g :/(z+X)—1dz=/(w—X)—ldw:Hg. (14)

Additionally note the relationship (z + X)* = (Z — X)) implies R (2) = R_(%),
which gives the relationship (R%°')*(0) = R"!(0) where * denotes the L? adjoint.
This meromorphic extension of the resolvent provides new proof strategies in
dynamics. For example, recall a flow is ergodic if ker X|z2(rq) = C, and a con-

sequence of this meromorphic extension is a new proof of ergodicity for volume-
preserving Anosov flows. Hopf proved ergodicity of geodesic flows over closed
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surfaces of strictly negative curvature, then Anosov generalized this “Hopf ar-
gument” to what is now called Anosov flows [Ano69]. Amazingly, however, this
spectral approach provides a new proof of ergodicity for Anosov flows [Lef25].

5 Guillarmou’s Il operator

Guillarmou [Guil7] introduced an important operator that provides a new mi-
crolocal proof of the Livsic theorem. To motivate this operator, consider an
Anosov manifold M and f € C*°(SM) satisfying I f = 0, and recall we are inter-
ested in finding high regularity solutions to the transport equation Xu = f. Two
solution candidates are uy := =R (0) f, which are well-defined if |, sy fAX =0
because in this case the pole at 0 vanishes and so we can write ux = +R1°(0) .
These solutions uy only have regularity H3 respectively. However, if these
solutions agree by

0= uy —u_ = (R?(0) + R™(0))f,

then the solution uy = u_ will have high regularity H{ NH?® C H*(SM) for any
s > 0. This motivates studying the kernel of the operator II := R1°'(0)+R"!(0).
In general, consider a closed manifold M with Anosov flow ¢; preserving a
smooth volume form du and let X be the infinitesimal generator. Taking R4 (z)
to be the meromorphic extension of the resolvents (z + X)~! as described in
Section [4] we may define Guillarmou’s 11 operator given by the self-adjoint
operator I := R1°!(0) + R"°!(0), which we characterize the kernel of below.

Theorem 5.1 (Guillarmou [Guil7]). Let M be a closed manifold with X the
generator a volume preserving Anosov flow and take f € H*(M) for s > 0.

(a) IfTIf =0, then f = Xu+v foru € H*(M) and v =117 f € C.

(b) Conversely, if f = Xu+v withu € H (M) for any 0 <r <s andv € C,
then IIf = 0.

Proof. First suppose IIf = 0 and we consider the functions uy := +R1(0)f
which are elements of Hf respectively. To study these functions, recall that
about 0 we have the Laurent expansions

+
(=4 X)7' = Re(2) = RE(0) + 22+ 0(2)

Multiplying both sides by z + X and collecting like terms gives
+XRY(0) = 1d —1IF = £RY(0)X (15)

where the equalities on the left and right follow by multiplying z + X on the
left and right respectively. Using the left equality gives Xuy = f — H§ f, or
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equivalently f = Xuy + Hat f. Importantly, note the assumption implies
uy —u_ = RY(0) + R™N0)f =TIf =0

and so we conclude u; = wu_; call this function w, which is then an element
of HY "H® C H*(M). Finally, recall HS‘f =1, f by , so set v = Hgf
which is in H} N H® C H*(M) and recall that by 0 a simple pole of R4 (z),
we have and so v € ker X, which by ergodicity implies v € C, proving
Conversely suppose f = Xu + v as in the hypotheses of and first note
computing the difference of the equations in and using Il = Il yields

XII =0=1IX.

Next, use v is constant and to explicitly compute Ry (z)v =v/z for z > 0,
so Ri°Y(z)v = 0 for Rez > 0 and hence for all z € C. Thus IIv = 0 and so
IIf =(Xu+v) =0. O

Notice Guillarmou’s IT operator allows us to strengthen the Livsic theorem from
arbitrarily low Sobolev regularity to Sobolev regularity as high as f. Indeed,
take f € H*(M) and suppose we know f = Xu for u € H"(M) for any 0 < r <
s. Then Theorem implies IIf = 0, which in turn implies f = Xu for u €
H?(M). In particular, if f € C°°(M) satisfies I f = 0, then if we can show f =
Xu for u € H"(M) for any r > 0, we may conclude u € C°°(M). For transitive
Anosov flows, we can get this initial low regularity for u by taking o € M with
dense orbit, then defining u(pizg) = fot f(psxo)ds on this dense orbit, and
using the Anosov closing lemma [KH95, Theorem 6.4.15] to argue this extends
with Holder regularity to M [Lef25]. That is, Guillarmou [Guil7] provides a
microlocal proof of the Livsic theorem for volume-preserving Anosov flows while
providing new Sobolev regularity results for the Livsic theorem (although some
Sobolev regularity results were previous proved in [dILO01]). Note a microlocal
proof of the Livsic theorem for general transitive Anosov flows was later given
in [GBL23], using the Journé’s lemma [Jou86] to get the initial low regularity
solution to the transport equation.

Now we revisit the question of injectivity of the X-ray transform over an Anosov
manifold M with flow generated by X. Let f € C°°(M) with Ipf = 0, then
by showing 7§ f = Xu for u of low regularity, we get Iln§ f = 0, which in turn
implies 7 f = Xu for u € C*°(SM), then the Pestov identity implies f = 0.
Alternatively, we can interpret this proof of injectivity as factoring through the
II7§ operator. That is, Iof = 0 implies II7ng f = 0, and we will soon see Ilr is
injective (over functions with average value 0), giving f = 0.

We next extend the domain of this continuous operator IIn} : C®(M) —
D’(SM), which has adjoint mo.Il : C*°(SM) — D’(M) by the self-adjointness
of II, and this adjoint can be decomposed 7o, II = 7o, R1°'(0) + 0. R™(0). Note
if u e D'(SM) we have

WF(mo.u) C {(z,€) € T*M : Jv € S, M, ((x,v), dr, &,0) € WF(u)}.

12



and by ker(dm) = V we have ((z,v),drg £,0) € X* @ H*. However, it is an
important result of Klingenberg [KIi74] and with a streamlined proof given by
IMn87] that VN(E,®X) = {0}, which implies (X*®H*)NE’ = {0} and therefore
WF(R'(0)f) = @ by . The same argument applies to R5/(0) f and so this
adjoint is in fact continuous mo. Il : C*°(SM) — C*° (M), which implies we can
extend the domain of our operator IIn} : D'(M) — D'(SM). In fact, a similar
analysis using properties of the anisotropic Sobolev spaces gives that we may
extend the domain to get a continuous map Ilnj : H *(M) — H*(SM) for
all s > 0 [Guil7]. Furthermore, this operator is injective over functions with 0
spectral projection (i.e. over functions with average value 0 when the Anosov
flow is mixing):

Theorem 5.2. If M is an Anosov manifold, then Iy : H (M) — H*(SM)
has kernel C and is injective over functions with 0 spectral projection.

First we introduce Guillarmou’s normal operator Ily = mo,Iln§, which Guil-
larmou [Guil7] showed to be an elliptic pseudodifferential operator of order —1
using key wavefront computations from Dyatlov-Zworski [DZ16] of the resol-
vents RE!(2). In the case of the X-ray transform I, over simple manifolds,
there is a related normal operator IjIy that has the same principle symbol as
I1y, so Iy is the analog of I;Iy in the Anosov case.

Proof of theorem for surfaces of negative curvature. Recall from the proof
of Theorem that IInjv = 0 for any v € C, accounting for the nontrivial
kernel. Thus consider f € C*°(M) with IIr§f = 0 and normalized so that
Ha'f =0, so by Theoremwe have Iy f = Xu for w € C*°(SM). But then
using the Pestov identity in the same way as in the proof of Theorem
implies f = 0. If we only have f € H *(M), then note Inyf = 0 implies
Iy f = mo.llmg f = 0 and so Il an elliptic pseudodifferential operator implies
feCc>(M). O

The more general theorem simply follows from a more general Pestov identity

[Lef25].

6 Research Directions

6.1 Results

We consider closed surfaces M of constant negative curvature and let X gen-
erate the (Anosov) geodesic flow. Recall we can prove the injectivity of I
by factoring through . That is, if f € C°°(M) has average value 0, then
Iof = 0 implies IIn§ f = 0, which implies f = 0. The main result listed below
is an explicit inversion formula for II7; on closed surfaces of constant negative

13



Gaussian curvature K < 0. In fact, the result is slightly stronger, for we invert
Guillarmou’s normal operator I1y = mo.Il7g on such surfaces using the operator

(o)

Sfim [ [ e L 0)dds ), fecE() (10)
S.M Jo

where 7y, ., (t) denotes the unique geodesic on M satistying v, ,(0) = z, ¥.,(0) =

v, and the measure dS, on fiber S, M is defined as in Section Applying

this operator followed by the Laplace-Beltrami operator A gives the following

inversion formula.

Theorem 6.1 (R.). Given a smooth function f with average value zero over a
connected closed surface M of constant curvature K < 0 we have the inversion
formula

ASKTlf = —872f. (17)

Note the above theorem reduces the problem of reconstructing f from Iyf to
the problem of constructing Ilof from Iyf for surfaces of constant negative
curvature. This X-ray transform on Anosov manifolds is analogous to the X-
ray transform on manifolds with boundary defined by integrating over geodesics
between the boundary and the IIy operator is analogous to the X-ray normal
operator in this boundary case. We prove this by first inverting an “attenuated

normal operator” H(()Z) = 7. 11*) 75 where the “attenuated IT operator” TI(2) :
C>®(SM) — C*(SM) is defined by

) = /Re_lt‘zgpfdt, Rez > 0. (18)

This operator converges weakly to Guillarmou’s II operator as the attenuation
coefficient z approaches 0 when acting on functions with average value zero.
That is, over an Anosov manifold M with f € C*°(SM) we have

lim (1) f,0) = (ILf, ), € C<(SM). (19)
provided |, g Jd¥ = 0 for the Sasaki volume form d3 as defined in Section
The distributional pairing (-, ) above is also with respect to the Sasaki volume
form. To invert this Héz) operator, we extend the operator Sk of to the
operator

St ::/ / T e VT, ()dtdS, (), f e (M), (20)
S M JO

Furthermore, we will write S(*) = Sﬁzl) and S = S_;. Before inverting H(()Z)

on closed surfaces of constant negative curvature, we first obtain the following
inversion formula on the Poincaré disk, which is interesting in its own right
and can be interpreted as a reconstruction formula for the “attenuated X-ray
transform” operator TT*) 7.

14



Theorem 6.2 (R.). Given a compactly supported smooth function f over the
Poincaré disk D, for any Re(z) > 0 we have the inversion formula

(A= 2(z+1)SAT f = 872 (21)

The above theorem and corresponding proof is an extension of Helgason’s inver-
sion formula for the unattenuated X-ray transform on the Poincaré disk [Hel80),
Theorem 1.14, Chapter III]. By descending to quotients of the Poincaré disk
and normalizing with respect to curvature, we obtain the following inversion
formula on closed manifolds of constant negative curvature. The theorem below
is an intermediate step to proving Theorem [6.1] but can be interpreted as a
reconstruction formula for the attenuated X-ray transform operator H(Z)TFS.

Theorem 6.3 (R.). Given a smooth function f over a connected closed surface
M of constant curvature K < 0, then for Re(z) > 0 we have the inversion
formula

(A = 2(z+ V=EK)SPTU{ f = —8r2f. (22)

With the above theorem we can then obtain Theorem by taking the limit
z — 0, which one may expect by . However, verifying the continuity at 0
requires some work using microlocal techniques and transversality.

6.2 Future Work

Recall that there is an X-ray transform I on symmetric 2-tensors that has
applications to marked length rigidity and spectral rigidity, and so a natural
question is to generalize the above inversion formulas to the case of symmet-
ric covariant m-tensors S™(SM™*). Given a tensor a € S™(SM*), define the
pullback 7% a(v) == a(v,- -+ ,v), then define the X-ray transform on tensors by
I, :=TIom},. Now we can state our question.

Question 1. How can the inversion formula of Theorem generalize to the
X-ray transform I, on symmetric m-tensors?

A leader in the field, Thibault Lefeurve, asked about the the case of I above
with some application in mind after seeing a preprint of the paper containing
the results in Section[6.1] Another natural question is to generalize these results
to non-constant curvature.

Question 2. How can the inversion formula of Theorem[6.1] generalize to non-
constant curvature?

15



Note that even in the case of simple manifolds, a nice inversion formula is only
known in the case of constant curvature surfaces. However, this inversion for-
mula takes the form f + W2f = EIlyf for a certain inversion operator E that
can be found in [PSU23] and a smoothing operator W that is 0 for constant
curvature. Thus this provides an approximate inversion formula in the case of
non-constant curvature and furthermore, Krishman [Kril0] showed the invert-
ibility of the operator Id +W?2 when the metric is in a small C® neighborhood
of a constant curvature metric, giving exact inversion formulas in such cases.
Perhaps the Theorem [6.1] inversion formula can be formulated to include this
same smoothing operator W, giving an approximate inversion formula for non-
constant curvature.

Recall the inversion formula for Ilyf reduces the question of reconstructing
f from Iyf to the question of reconstructing Ilyf from Ipf. Thus a natural
question is to complete this second step to achieve an inversion formula for I.

Question 3. How can we reconstruct gy f from Iyf on a hyperbolic surface M ?

If possible, answering this question would likely require studying a particular
hyperbolic surface M in which the structure of the closed geodesics are well un-
derstood and finding a method to find explicit closed geodesics that approximate
orbits as the Anosov closing lemma promises.

Next, there is the question of extending the theory of the geodesic flow over
an Anosov manifolds to more general flows such as Anosov magnetic flows over
a surface, which represents the dynamics of a charged particle of unit mass
and charge under a magnetic field, and is defined on the cotangent bundle
w:T*M — M of a closed surface M as follows. First, consider the Hamiltonian
H = $g,(&,€) defined over T* M (which is the same Hamiltonian as the geodesic
flow). However, now counsider the twisted symplectic form w, = Wean — 70
where wean is the canonical symplectic form, and ¢ is a 2-form representing
the magnetic field. This defines a Hamiltonian system over T*M, and the
Riemannian metric allows us to identify this with 7'M, and these dynamics can
then be restricted to the unit tangent bundle SM.

Given an Anosov magnetic flow over the unit tangent bundle 7y : SM — M,
we may define the Guillarmou’s II operator of this Anosov flow, then we may
define a normal operator Iy := mo.Ilnj, and it is natural to examine if this
normal retains the nice properties from the case of the geodesic flow.

Question 4. Is the normal operator 11y a pseudodifferential operator of order
—1 in the case of an Anosov magnetic flow over a Riemannian manifold? What
is the principal symbol?

The magnetic flow is prototype for volume-preserving Anosov flows and offer
more complexity than simply geodesic flows, and answering the above question
is the first step to further generalizing some of Guillarmou’s techniques.
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