Hearing the Local Orientability of Orbifolds

Sean Richardson '20, Liz Stanhope

Department of Mathematical Sciences, Lewis & Clark College

• If you have a drum, the sound the drum makes is determined

- If you have a drum, the sound the drum makes is determined
- However, if you hear a drum being played in another room, what can you say about it?

- If you have a drum, the sound the drum makes is determined
- However, if you hear a drum being played in another room, what can you say about it?
- Can you hear the shape of a drum?

- If you have a drum, the sound the drum makes is determined
- However, if you hear a drum being played in another room, what can you say about it?
- Can you hear the shape of a drum?
- Can you hear the shape of mathematical objects called "orbifolds"?

What is an Orbifold?

Reflectional Symmetry

- We classify symmetries with the group of isometries that leave a pattern unchanged
- Figure 1 has group $\Gamma = \{e, r\}$
- One line in space is left unmoved by all $g \in \Gamma$.
- We can fold the space into \mathbb{R}^2/Γ

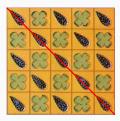


Figure 1: Reflectional Symmetry

Figure 2: Folding the Pattern

Rotational Symmetry

- We classify symmetries through the group of isometries that leave a pattern unchanged
- Figure 3 has group $\Gamma = \{0^{\circ}, 90^{\circ}, 180^{\circ}, 270^{\circ}\}$
- One point is left unmoved by all $g \in \Gamma$
- We can twist the space into \mathbb{R}^n/Γ creating a party hat

Figure 3: Rotational Symmetry

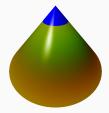


Figure 4: Folding the Pattern

Orbit-folding

- We fold a pattern such that no section occurs twice.
- Result has mirror edge and cone point strata.

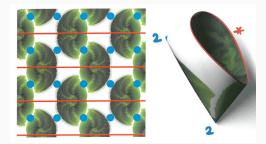


Figure 5: Folded Pattern from The Symmetries of Things

- An *orbifold* is a generalization of a manifold.
- While a manifold has local structure Rⁿ, an orbifold is allowed local structure Rⁿ/Γ

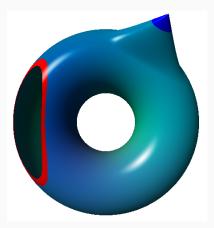


Figure 6: Orbifold Representation

What is the "Sound" of an Orbifold?

Sound Comes from Vibration

• Like physical objects, the "sound" of an orbifold is defined by how quickly it vibrates.

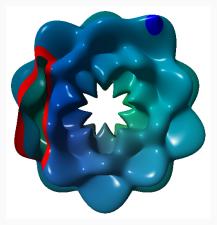


Figure 7: Orbifold Vibration

- Let $u(t, \mathbf{x})$ be the amplitude of the wave at time t and position \mathbf{x}
- The orbifold will vibrate according to the wave equation,

$$\Delta \psi = \frac{\partial^2 u}{\partial t^2}$$

 Assuming u(t, x) = A(t)ψ(x) for standing wave solutions results in

$$\Delta\psi(\mathbf{x}) = -\lambda\psi(\mathbf{x})$$

$$\Delta\psi(\mathbf{x}) = -\lambda\psi(\mathbf{x})$$

- Eigenvalue solutions form a discrete spectrum $\lambda_1, \lambda_2, \lambda_3, \ldots$ such that $\sqrt{\lambda_i}$ is a fundamental frequency.
- This spectrum $\lambda_1, \lambda_2, \lambda_3, \ldots$ is called the Laplace Spectra.
- The Laplace Spectra defines "sound" on an orbifold.

- "Can you hear the shape of an orbifold?"
- What properties of an unknown orbifold \mathcal{O} are determined by it's known Laplace Spectra?
 - Can you hear the types/amount of strata on an orbifold?
 - Can an orbifold and a manifold have the same Laplace Spectra?

Heat Expansion

Intuition of Heat Expansion

Consider:

- Heat up a point x on an orbifold O
- Then, allow the heat to disperse
- The point cools down with time

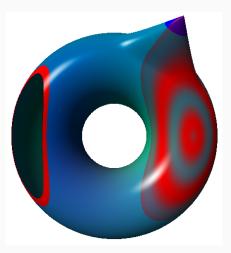


Figure 8: Heat Dispersing from x

We study a specific function:

- How does a point cool with time on average for every point in the orbifold *O*?
- We approximate this function for small values of time.
- This function is related to the Laplace Spectrum.

The Heat Equation

- Let u(t, x) be the heat at time t and position x on an orbifold O
- Heat will spread through $\ensuremath{\mathcal{O}}$ according to the heat equation

$$\Delta u = \frac{\partial u}{\partial t}$$

• The solution to the heat equation has the form,

$$u(t, \mathbf{x}) = \int_{M} K(t, \mathbf{x}, \mathbf{y}) \mu_0(y) dvolM_y$$

• Consider the function $K(t, \mathbf{x}, \mathbf{y})$, the "heat kernel"

Heat Kernel

- If heat starts at \mathbf{p} , there is $K(t, \mathbf{p}, \mathbf{q})$ heat at \mathbf{q} at time t.
- Taking the trace of *K* relates to the elements of the Laplace Spectra.

$$\mathsf{Tr}(\mathcal{K}) = \int_M \mathcal{K}(t, \mathbf{x}, \mathbf{x}) dvol M = \sum_{j=0}^\infty e^{-\lambda_j t}$$

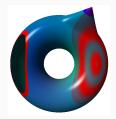


Figure 9: Heat Dispersing from p

Asymptotic Expansion of Heat Kernel

• The Heat trace has a useful approximation for small values of time.

$$\operatorname{Tr}(K) \stackrel{t\to 0}{\sim} \frac{a}{t} + \frac{b}{\sqrt{t}} + c + d\sqrt{t} + et + \dots$$

• Because we now know $\operatorname{Tr}(K) = \sum_j e^{-\lambda_j t}$,

$$\sum_{j=0}^{\infty} e^{-\lambda_j t} \stackrel{t\to 0}{\sim} \frac{a}{t} + \frac{b}{\sqrt{t}} + \dots$$

A different value of any coefficient a, b, c,... implies a different Laplace Spectra λ₁, λ₂, λ₃,...

Asymptotic Expansion of Heat Kernel

Meaning of
$$\sum_{j=0}^{\infty} e^{-\lambda_j t} \stackrel{t\to 0}{\sim} \frac{a}{t} + \frac{b}{\sqrt{t}} + \dots$$
 graphically:

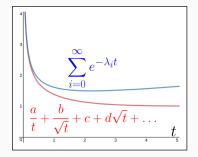


Figure 10: Asymptotic Expansion Approximation

We find the coefficients of the heat expansion through the following expression:

$$(4\pi t)^{-\dim(\mathcal{O})/2} \sum_{k=0}^{\infty} a_k(\mathcal{O}) t^k + \sum_{N \in S(\mathcal{O})} \frac{(4\pi t)^{-\dim(N)/2}}{|\operatorname{Iso}(N)|} \sum_{k=0}^{\infty} t^k \int_N \sum_{\gamma \in \operatorname{Iso}^{\max}(\tilde{N})} b_k(\gamma, x) dvol_N$$

Notes:

- The strata in the orbifold affect the expansion
- Even strata and odd strata behave differently

Result

• An isometry g can preserve or reverse orientation

Local Orientability

- An isometry g can preserve or reverse orientation
- The local structure ℝⁿ/Γ of some orbifold O is non-orientable if Γ contains a single orientation reversing isometry.

Local Orientability

- An isometry g can preserve or reverse orientation
- The local structure ℝⁿ/Γ of some orbifold O is non-orientable if Γ contains a single orientation reversing isometry.
- We say \mathcal{O} is *locally non-orientable* if \mathcal{O} contains some non-orientable local structure, otherwise \mathcal{O} is *orientable*.

Local Orientability

- An isometry g can preserve or reverse orientation
- The local structure ℝⁿ/Γ of some orbifold O is non-orientable if Γ contains a single orientation reversing isometry.
- We say \mathcal{O} is *locally non-orientable* if \mathcal{O} contains some non-orientable local structure, otherwise \mathcal{O} is *orientable*.
- Local orientability can be interpreted through the existence of a short orientation reversing path.

We Can Hear Local Orientability

- We found that you can hear the local orientability of an orbifold $\mathcal{O}.$
- There exist no locally orientable orbifold and locally non-orientable orbifold with the same Laplace Spectra.

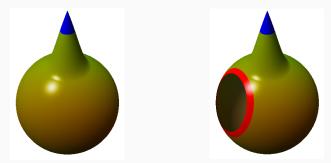


Figure 11: Two Orbifolds with Different Laplace Spectra

Proof Framework

- Let \$\mathcal{O}_o\$ be some locally orientable odd orbifold and let \$\mathcal{O}_n\$ be some locally non-orientable odd orbifold.
- \$\mathcal{O}_o\$ will have no even strata while \$\mathcal{O}_n\$ will have at least one even strata.

 Table 1: Heat expansion coefficients

We are able to prove that at least one d_i is non-zero. So, \mathcal{O}_o and \mathcal{O}_n have distinct heat expansions, which implies different Laplace Spectra.

Questions?