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Symmetries of Space

A pattern with symmetry has a group of actions Γ we can perform on the
pattern without change. For instance, we can rotate Figure 1a by any element
of Γ = {0°, 90°, 180°, 270°} and still preserve the pattern. Similarly, Figure 1c
is preserved by doing nothing and reflecting along the diagonal. Notice these
actions do not alter the size of the patterns, making them isometries.
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Figure 1: Folding Symmetries

To visualize symmetry we imagine folding patterns on pieces of paper such
that each piece of the pattern occurs only once. In Figure 1c, we can fold
the pattern across the diagonal, creating half plane with a sharp edge. In
Figure 1a, we can roll up the pattern into a party hat shape, creating a sharp
point. We denote these resulting shapes Rn/Γ where Γ is the symmetry group
of the pattern. The sharp parts of the shapes are strata.

Orbifolds

An orbifold is a generalization of a simple
n dimensional surface, which we call a
manifold. If you were to zoom into a
manifold, you will see flat space, for it has
local structure Rn. However, an orbifold
allows local structure of Rn/Γ (such as
the cone point or mirror edge in
Figure 1). Figure 2 is a visual
representation of a two dimensional
orbifold with a cone point and a mirror
edge.

Figure 2: Orbifold Representation

Laplace Spectra

A string on the guitar produces a sound determined by a specific frequency
it can vibrate at. Actually, the string can vibrate at a spectrum of resonance
frequencies. All objects have such a vibrational spectrum — drums will
vibrate at only certain sounds. Mathematically, we express these frequencies
through the Laplace Spectra.
The Laplace Spectra follows from the wave equation, ∆u = ∂2u

∂t2 , which
describes the amplitude u(t,x) at any location x and time t on an orb-
ifold. In assuming u(t,x) = A(t)ψ(x) for standing wave solutions, we find
∆u = −λψ(x). The eigenvalue solutions λ1, λ2, . . . are called the Laplace
Spectra where each

√
λi is a valid fundamental frequency.

Research Question

Given a specific drum, it is possible to deduce what sound the drum will
make when hit. However, consider the reverse: if you hear a drum in the
neighboring room, is it possible to reverse engineer the drum’s shape? In
other words, “can you hear the shape of a drum?” In this research we ask a
similar question: Can you hear the shape of an orbifold?
Formally, consider some Laplace Spectra λ1, λ2, . . . belonging to some un-
known orbifold O. From the Laplace Spectra, what properties can we deduce
about O?

Local Orientability

Isometries can preserve or reverse orientation. For instance, a reflection re-
verses orientation (when you look into a mirror, your reflection is flipped),
but a simple rotation preserves orientation.
Some local structure of an orbifold Rn/Γ has a group of isometries Γ associ-
ated with it. If Γ contains a single orientation reversing isometry, the local
structure is non-orientable; otherwise, it is orientable.
We define an orbifold to be locally non-orientable if it has a single non-
orientable local structure; otherwise, the orbifold is locally orientable.

Result

We found you can hear the
local orientability of an
orbifold — there exists no
locally orientable orbifold and
locally non-orientable orbifold
with the same Laplace
Spectra. Figure 3 shows two
orbifolds guaranteed to have
different Laplace Spectra by
this result.

Figure 3: Non-isospectral Orbifolds

Future Work

In addition to this result, we studied
symmetry patterns of 3 dimensional space,
which are called the crystallographic space
groups. Each space group of isometries can be
folded into a 3 dimensional orbifold
(visualized in higher dimensional space).
These orbifolds have a Laplace Spectra we can
study. There are 230 such patterns and
corresponding orbifolds, so perhaps a
computer can automate the process of finding
heat expansion coefficients. Figure 4: Spacial Symmetry from

The Symmetries of Things

Asymptotic Heat Expansion

Our question requires us to relate the properties of the orbifold to its Laplace
Spectra, which can be done by studying how heat disperses throughout the
orbifold. This section will touch on the logic used to prove our result.
Consider focusing heat at a single point x on some orbifold O. Then, allow
the heat to disperse around O. The point x will cool with time. We study
a specific function: how a point cools on average for every point in O, which
is known to be ∑∞

i=1 e
−λit where λi is an element of the Laplace Spectrum of

O. Formally, this falls out of the heat equation, ∆u = ∂u
∂t . The integrand of

the solution is the heat kernel K, and we find that Tr(K) = ∑∞
i=1 e

−λit.
If we approximate this function for small values of time, we get a function of
the following form (for 2 dimensions)

∞∑
i=1

e−λit ∼ a

t
+ b√

t
+ c + d

√
t + . . .

Where the right side approximates the left for small t as in Figure 6.

Figure 5: Heat dispersing from x
Figure 6: Asymptotic Expansion Approximation

The resulting equation has coefficients a, b, c, . . . . We can find these coeffi-
cients from the properties of O. The coefficients are described by

(4πt)− dim(O)/2
∞∑
k=0

ak(O)tk

+
∑

N∈S(O)

(4πt)− dim(N)/2

| Iso(N)|

∞∑
k=0

tk
∫
N

∑
γ∈Isomax(Ñ)

bk(γ, x)dvolN

So, properties of O determine coefficients a, b, c, . . . and the coefficients de-
termine the Laplace Spectra λ1, λ2, . . . . If two orbifolds differ in a single
coefficient, they will have different Laplace Spectra. In our proof, we use the
fact that in odd dimensions, only isometries with even dimensional strata are
orientation reversing (and vice versa for even dimensions). With this, we show
that the locally orientable and locally non-orientable orbifolds are guaranteed
to differ in at least one coefficient, implying different Laplace Spectra.
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