
CAT FLIPPING

ARDEN RASMUSSEN, SEAN RICHARDSON, AND WILL MCDERMOTT

1. Introduction

In this document we explore the mathematical framework surrounding our cat
model, provide details about the physics simulation we used, and recount mathe-
matical formulations used in our code. We begin in the first section, by proving
that our axis of rotation is a principle axis, then move on to calculate the moment
of inertia and verify that our model truly does have zero angular momentum. In the
next section we detail our code, giving a run down of the simulation. And the final
section includes how we smoothed our angular velocity function and a computation
solving for the initial angle needed for our model to perform a complete rotation.

l

r

A

l

r

B

θ

Figure 1. The model of a cat, and the variable parameters.

2. Moment of Inertia of the Cat

We model a falling cat with two cylinders A and B connected by a spherical
joint (which we assume to be massless) with A and B separated by angle θ.

A

y′z′

x′
B

y′′

z′′

x′′

y

z

x

Figure 2. The coordinate axis that we define for our computations.

1

2 ARDEN RASMUSSEN, SEAN RICHARDSON, AND WILL MCDERMOTT

Claim 1. About the center of mass, the y axis of the cat is principle. Further, we

can write ~L = (2Iyy)ωy ŷ. For an Iyy dependent on the geometry of the cylinders
and θ.

Proof. Let the moment of inertia tensors of cylinders A and B about the center
of mass of the cat as a whole be denoted IA and IB . Recall the definition of the
moment of inertia tensor:

I =

∑(y2 + z2)
∑
xy

∑
xz∑

yx
∑

(x2 + z2)
∑
yz∑

zx
∑
zy

∑
(x2 + y2)


Then, by the reflectional symmetry of bodies A and B, the calculations for IA and
IB are identical except for the replacement of y by −y. So, we can safely write

IA =

Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

 and IB =

 Ixx −Ixy Ixz
−Iyx Iyy −Iyz
Izx −Izy Izz

 ,

And so the moment of inertia tensor I of the cat as a whole is of the form

I = IA + IB =

2Ixx 0 2Ixz
0 2Iyy 0

2Izx 0 2Izz


Then ~y is a clear eigenvector of I confirming that the y axis is a principle axis. �

Note that the above argument can be generalized to any two bodies with reflec-
tional symmetry through the x, y plane.

Claim 2. The Iyy in claim 2 can be written Iy′y′ cos2(θ/2) + Iz′z′ sin2(θ/2) where
Iy′y′ and Iz′z′ are the moment of inertia elements corresponding to the principle
axes.

Proof. Let x′, y′, z′ denote the principle axes of cylinder A about the center of
mass with z′ going down the length of the cylinder, x′ parallel to x, and y′ in
the corresponding location for a right-handed orthogonal coordinate system. Then,
with this coordinate system corresponding to the principle axes, we can write the
moment of inertia tenor I ′A of cylinder A about the center of mass of A.

IA =

Ix′x′ 0 0
0 Iy′y′ 0
0 0 Iz′z′


Now, we adjust to the x, y, z coordinate system established above and solve for Iyy.
Note ŷ is given by (0, cos(θ/2), sin(θ/2)) in x′, y′, z′ coordinates. Thus by adjusting
coordinates we have

Iyy =
(
0 cos(θ/2) sin(θ/2)

)Ix′x′ 0 0
0 Iy′y′ 0
0 0 Iz′z′

 0
cos(θ/2)
sin(θ/2)


= Iy′y′ cos2(θ/2) + Iz′z′ sin2(θ/2)

The above gives the value of Iyy about the center of mass of A, but the center of
mass of the cat as a whole shares identical x and z values. So, by Iyy =

∑
x2 + z2,

the value of Iyy holds about the center of mass the cat.
�

CAT FLIPPING 3

Again, note the above argument is generalizable given the principle axes.
Then overall we have a simple relationship between the angular momentum of

the cat and an angular velocity ω of the cat in the ~y direction.

(1) ~L = (Iy′y′ cos2(θ/2) + Iz′z′ sin2(θ/2))ωŷ

In particular, if A and B are two solid cylinders of equal density with length L,
radius R, and mass M we have

(2) ~L =

((
1

4
MR2 +

1

12
ML2

)
cos2(θ/2) +

1

2
MR2 sin2(θ/2)

)
ωŷ

3. Note on stability

The cat rotates about y axis, but if this axis is unstable, the cat will have
difficulty performing this turn. So, we must check the conditions under which the
rotation axis is stable. Note that we have the following principle axis values (found
in the same way we get Iyy above).

Ixx = Ix′x′

Iyy = Iy′y′ cos2(θ/2) + Iz′z′ sin2(θ/2)

Izz = Iy′y′ sin2(θ/2) + Iz′z′ cos2(θ/2)

Assuming the cylindrical model and a sufficiently large length we can assume
Ix′x′ = Iy′y′ > Iz′z′ . But then, we have that

Iyy = Iy′y′ cos2(θ/2) + Iz′z′ sin2(θ/2) < Ix′x′ cos2(θ/2) + Ix′x′ sin2(θ/2) = Ix′x′ = Ixx.

So, Iyy > Ixx and by the same reasoning, Izz > Ixx. Additionally, if we have
π ≤ θ ≤ π/2, then by the combination of sin(θ/2) ≤ cos(θ/2), Iz′z′ < Iy′y′ , and the
rearrangment inequality to conclude that

Iyy = Iy′y′ cos2(θ/2) + Iz′z′ sin2(θ/2) ≤ Iy′y′ sin2(θ/2) + Iz′z′ cos2(θ/2) = Izz

And so we conclude that with a sufficiently large length and with π ≤ θ ≤ π/2 we
have that Iyy ≤ Izz < Ixx, making Iyy not the intermediate axis and thus a stable
axis.

Specificially, a “sufficiently large length” is exactly when L ≥
√

3R for then
assuming cylinders of length L, radius R, and mass M we get that

Iz′z′ =
1

2
MR2 =

1

4
MR2 +

1

2
MR2 ≤ 1

4
MR2 +

1

2
M

(
L√
3

)2

=
1

4
MR2 +

1

12
ML2 = Ix′x′

which gives the assumption given earlier. So, both setting θ < π/2 and L <
√

3R
could lead to issues with stability.

4 ARDEN RASMUSSEN, SEAN RICHARDSON, AND WILL MCDERMOTT

4. The Angular Velocity of Cylinders

Given the result of our minor project paper,

Let C = 1− 2
Izz
Icc

sin(θ/2)

While we solved for ω0 as a specific value, we have the freedom for ω0 to vary
as a function of time. In general, we can have the function ω(t). Note that C is
constant in time, so we only require that

π =

∫
dφ

dt
dt = C

∫
ω(t)dt

In other words, we can have any function ω(t) so long as∫
ω(t)dt =

π

C
= ω0T

where T is the total time taken in the reorientation process.
We take of advantage of the previously described freedom over ω(t) to ensure

continuity of angular velocity and angular acceleration throughout the reorientation
maneuver. In particular for the purpose of the simulation we choose the function

ω(t) = ω0

(
1− cos

(π
T
t
))

Note that upon integration we get
∫
ω(t)dt = ω0T as required.

5. Angular Momentum Calculation

We will now demonstrate that our model has a net of zero angular momentum.
Refer to the figure above. To compute the overall angular momentum of the body
we will begin by calculating the angular momentum of the two respective cylinders.
Let x′, y′, z′ x′′, y′′ and z′′ be the axes shown above 2.

In finding ~L′A and ~L′′B , we begin by noting that z′ is a principle axis for cylinder
A and z′′ is a principle axis for cylinder B. To see why this is true remember that
the moment of inertia tensor for a cylinder of height h and radius r about its central
axis is

I =

 1
12m(3r2 + h2) 0 0

0 1
12m(3r2 + h2) 0

0 0 1
2mr

2

 .
The matrix above is diagonal so the central axis is a principal axis. Therefore
rotation about the central axis ω, direction indicated in the figure 2, is given by

~LA
′

=

 0
0

−Iz′z′ω

 ~LB
′′

=

 0
0

Iz′′z′′ω

 .
Next, we move on to calculate the angular momentum of the two cylinders viewed

as a single body rotating about the y axis, which we will denote ~LC . In calculating
~LC we first remember that y is a a principal axis for rotation of the two cylinders
viewed as a single body. With this in mind, angular momentum for rotation about
the y axis with speed ωc, direction indicated in the figure 2, has the form

~LC =

 0
Iyyωc

0



CAT FLIPPING 5

~LA
′′
, ~L′′B , and ~LC are expressed in different bases, our next step is to express ~LA

and ~LB in terms of the x, y, z basis. Recall that the matrix for negative and positive
rotation by θ

2 about the x axis, denoted Rx−θ/2 and Rxθ/2 respectively are given by

Rx−θ/2 =

1 0 0
0 cos(θ2) sin(θ2)
0 −sin(θ2) cos(θ2)

Rxθ/2 =

1 0 0
0 cos(θ2) −sin(θ2)
0 sin(θ2) cos(θ2)

 .
Using the matrices above we can compute ~LA(~L′A in the x, y, z basis) and ~LB(~L′′B
in the x, y, z basis). Along with the information that Izz = Iz′z′ = Iz′′z′′ , we have

~LA =

 0
sin(θ/2)Izzω
-cos(θ/2)Izzω

 ~LB =

 0
sin(θ/2)Izzω

cos(θ/2)Izzωω

 .
Now we are ready to compute the overall angular momentum of the system. To do
so first recall the main outcome of our minor project,

ωc = ω

(
−2

Izz
Iyy

sin (θ/2)

)
.

Computing ~LA + ~LB + ~LC we obtain 0
sin(θ/2)Izzω
-cos(θ/2)Izzω

+

 0
sin(θ/2)Izzω

cos(θ/2)Izzωω

+

 0
ω (−2Izz sin (θ/2))

0

 = ~0.

Our model has zero angular momentum.

6. Simulation

To verify our computations, we constructed a software simulation, that would
be easily configurable, to allow rapid development. For the simulation we chose to
use the Python programming language, and to make use of the pyBullet physics
simulator. pyBullet is provided using python’s integrated package manager pip.

6.1. URDF File Format. pyBullet makes use of the URDF file format, so all
models in the simulation must be loaded from a urdf file. This format has some
specific constraints that are explained here, and the cat model that we used is
included. The urdf file type is a subset of XML.

The model is constructed with links and joints, and the entire format is
contained within a robot object.

6.1.1. Link. The link object can contains three sub objects, visual collision,
and inertial. The visual and collision objects, can define a geometry, which can
in turn be constructed from a few selected primitives. And they can also define
an origin object. The geometry is used to determine the visual display, or the
collision geometry accordingly, and the origin object defines the orientation and
the position of the link relative to the robots origin.

The inertial object can define the components mass, and its inertial tensor,
along with the origin for the inertial computation. For most purposes the origins
for all three of these components can be the same, and the geometry of the visual
and collision components can also be the same.

6 ARDEN RASMUSSEN, SEAN RICHARDSON, AND WILL MCDERMOTT

6.1.2. Joint. The joint object defines the connections between the different links.
Each joint has a parent link and a child link, and an origin. The types of joints that
are available are a fixed joint, where no motion is permitted, a revolute joint, which
is rotation about a single axis, and a slide joint, which is an in and out motion.
Each of these different types of joints have different parameters that need to be
defined for each of them. Our model only makes use of the fixed joints, and the
revolute joints.

For the revolute joint, we must also define the axis for its rotation and the limits
of angles for the rotation.

6.1.3. Construction. To construct the cat with variable parameters, we wrote a
script to generate the urdf file altering the parameters to be what we desired.

6.2. Simulation Setup. pyBullet provides all of the physics simulations that are
necessary for most common applications, but first it must be initialized in the code.
To do this one must use the following commands before any physics simulation is
possible.

import pybullet as p

physicsClient = p.connect(p.GUI)

p.setAdditionalSearchPath(pybullet_data.getDataPath())

These commands initialize the graphical interface for the simulation, and includes
a path for some standard pyBullet models.

The next step is to set global constants that are persistent for the entirety of the
simulation. In this case we will only set the gravitational constant.

p.setGravity(0,0,-9.8)

This function sets the gravitational force in the x, y, and z directions.
The final step before beginning the simulation is to load any models that will be

used in the simulation. For our purposes, we load the standard plane.urdf, and
we load our constructed cat.urdf.

planeId = p.loadURDF("plane.urdf")

startPos = [0,0,10]

startOrientation = p.getQuaternionFromEuler([0,0,0])

catId = p.loadURDF("cat.urdf",startPos, startOrientation)

These functions load the plane model positioned at the origin, and loads the cat
model positioned at (0, 0, 10), with the default orientation.

6.3. Simulation Computation. With our our organization of the simulation, we
are able to compute all necessary values prior to the execution of the simulation.
This process is implementing the equations that we found previously, and comput-
ing their numerical values for the provided model of the cat. The first stage is
computing the time that the cat has to preform the maneuver, and partitioning
that time for the three different stages of the motion.

t_max = np.sqrt(2 * 10 / 9.8)

step_2 = 2 * t_max / 10

step_3 = 8 * t_max / 10

dt = (step_3 - step_2)

Next we compute the moment of inertia.

CAT FLIPPING 7

ix = 1/12 * mass * (radius**2 + length**2)

iy = 1/12 * mass * (radius**2 + length**2)

iy = 1/2 * mass * radius**2

ic = iy * np.cos(theta / 2.0)**2 + iz * np.sin(theta / 2.0)**2

c = 1 - 2 * iz / (2 * ic) * np.sin(theta / 2.0)

These first lines are computing the moment of inertia in the three principal axes for
each individual cylinder of the cat model. Next we compute the combined moment
of inertia, and a constant that we call c. This constant c we derived previously.
Now using the moment of inertia, and the time available for the cat, we compute
the rate at which the cat should rotate. Since this will be variable with respect to
time, we also construct a function to return the rate of rotation.

omega_0 = np.pi / (dt * cloud)

omega = lambda t: omega_0 * (-np.cos(np.pi / dt * t) + 1)

6.4. Simulation Execution. Now with all the components of the simulation con-
structed, we are able to run the simulation. The entire code is presented below,
and we will explain the three stages of execution afterwards.

while i < 1000:

p.stepSimulation()

if t < step_2:

p.setJointMotorControlArray(catId, [0,2], p.POSITION_CONTROL,

targetPositions=[(np.pi - theta) / 2.0 * (1 - np.cos(np.pi / step_2 *

(t - step_2))),0])

elif t < step_3:

p.setJointMotorControlArray(catId, [0,2], p.POSITION_CONTROL,

targetPositions[(np.pi - theta) * np.cos(phi), (np.pi - theta) * np.sin(phi)])

phi += omega(t - step_2) / fps

elif t < t_max:

p.setJointMotorControlArray(catId, [0,2], p.POSITION_CONTROL,

targetPositions=[x/2 * (1 + np.cos(np.pi / dt_3 * (t - step_3))), y/2 * (1

+ np.cos(np.pi / dt_3 * (t - step_3)))])

t += 1.0 / fps

i += 1

The simulation can be broken into three steps. The first is the process of bending the
straight cat into the partially bent position. Then the next stage is the rotational
motion, which results in the reorientation. Then the final stage is the straightening
of the cat.

7. Numerical Example

Here we will consider a physical example using our model of a cat, to compute all
of the necessary values. We will consider a cat of mass = m = 1, length = l = 1,
radius radius = r = 0.1, and maximum angle of bend θ = π

4 . We will also consider
the cat to be dropped from a height of 10, and with standard gravity of −9.8. The
model of this cat is depicted in Figure 3.

8 ARDEN RASMUSSEN, SEAN RICHARDSON, AND WILL MCDERMOTT

1

0.1

A

1

0.1

B

π
4

Figure 3. Specific model of cat for example

The first step is to compute the time that the cat has to do the rotation. We
find this simply using basic kinematics

∆t =

√
2h

g
=

√
2 · 10

9.8
≈ 1.428.

Next we will also compute the moment of inertia I, and to compute this we
require the inertia tensor for each of the cylinders individually. So we compute
these to bem

12

(
r2 + l2

)
0 0

0 m
12

(
r2 + l2

)
0

0 0 mr2

2

 ≈
0.084 0 0

0 0.084 0
0 0 0.005

 .

Since both A and B cylinders are identical, then this is the inertia tensor for both
of them. The next stage is to compute the moment of inertia in the ~y axis.

Iyy = Iy′y′ cos2

(
θ

2

)
+ Iz′z′ sin2

(
θ

2

)
≈ 0.071841 + 0.000732 ≈ 0.0726.

Then from our previous computation, we evaluate for the rotational speed of the
cylinders ω. We compute this as

ω =
π

∆t
(

1− Iz′z′
Iyy

sin
(
θ
2

)) ≈ 2.2514.

This is the rate that each cylinder must rotate at in order for the full rotation to
occurs.

To verify that this rate will work, we compute∫ ∆t

0

ω

(
1− Iz′z′

Iyy
sin

(
θ

2

))
dt

=
π

∆t

∫ ∆t

0

dt = π.

Now we can compute the maximum amount of torque that the cat would require
to preform the rotation motion. This is given by

max(τ2) = ω
π

∆t
I∗.

We compute I∗ by the use of the parallel axis theorem. So we find

I∗ = Ix′x′ +md =
m

12

(
r2 + l2

)
+m

h2

4
=
m

12

(
r2 + 4l2

)
≈ 0.3342.

CAT FLIPPING 9

This is the moment of rotation of the cylinder about its end. Now we can use this
to compute the maximum torque required.

max(τ2) = ω
π

∆t
I∗ =

π2I∗

∆t2
(

1− Iz′z′
Iyy

sin
(
θ
2

)) ≈ 1.655N.

8. Smoothing in the Simulation

For each of the three steps in the simulation, we apply a smooth curve to the
function θ(t) to ensure continuity of angular velocity and angular acceleratioin,
for the motors in the simulation can only handle a finite torque. Assume the
model bends to angle θ0 and we allow each of the three stages times T1, T2, and T3

corresponding to the folding, the twisting, and the intwisting respectively. Then,
we control the in the simulation according to functions θ1, ω2, θ3 for each of the
respective phases.

θ1(t) =

(
π − θ0

2

)(
1− cos

(
π

T1
t

))
ω2(t) = ω0

(
1− cos

(
π

T2
t

))
θ3(t) =

(
π − θ0

2

)(
1 + cos

(
π

T3
t

))

Additionally, the simulation software requires a provided maximum torque for
the motors. A torque too low will prevent the cat from turning and we found a
huge torque could be at the cost of precision in the simulation. So, we provide a
calculation for placing reasonable bounds on the torque. Let τ1, τ2, τ3 denote the
torques for each of the three stages. Then each function is given by the following
where I∗ is the moment of inertia of the cylinder lengthwise about the end of
the cylinder. Note this can be calculated by the parallel axis theorem with I∗ =
Ix′x′ +md2.

τ1 = I∗θ̈1 τ2 = I∗ω̇2 τ3 = I∗θ̈3

We solve for each function and apply sin(t) ≤ 1 and cos(t) ≤ 1, which gives the
maximum of the functions over the appropriate interval, so:

max(τ1) =
π2

T 2
1

I∗ max(τ2) = ω0
π

T2
I∗ max(τ3) =

π2

T 2
3

I∗

providing the values to set the maximum torque to in each step.

9. Solving for one-turn θ

We solve for the θ between the cylinders such that the cat twists for a full 2π
radians to accomplish a change in orientation of π radians. To accomplish this,
we more generally consider when dφ

dt = ω0α for some α ∈ (0, 1) and notice that

our original question corresponds to the case θ = 1
2 . Let ωc denote the counter

rotation and recall dφ
dt = ωc + ω0, so by simple algebra we wish to have ωc

ω0
= 1

α+1 .
Additionally, recall

ωc =
2Iz′z′

Iyy
ω0 sin

(
θ

2

)

10 ARDEN RASMUSSEN, SEAN RICHARDSON, AND WILL MCDERMOTT

And so the problem reduces to solving for θ in the following equation:

1 = (α+ 1)
2Iz′z′

Iyy
sin

(
θ

2

)
However, Iyy is dependent on θ, so we must expand Iyy out into the form Iyy =

Iy′y′ cos2(θ/2) + Iz′z′ sin2(θ/2). Then by plugging this into the equation, we can
convert everything into sines, apply the quadratic formula on sin(θ/2) allowing us
to solve for θ as:

θ = 2 arcsin

(
Iz′z′(α+ 1) +

√
I2
z′z′(α+ 1)2 − Iy′y′(Iz′z′ − Iy′y′)
(Iz′z′ − Iy′y′)

)
where the substitution α = 1

2 gives the one-turn θ.

