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Abstract
The greatest source of uncertainty in model estimates of projected 
climate change involve clouds and aerosols [1]. Photographic 
images of clouds in the sky are simple to acquire and archive, but 
climate scientists need an automated process for identifying clouds 
in these images. We bring machine learning to bear on this problem. 
Specifically, we use convolutional neural networks [2], which to our 
knowledge have not previously been applied to this task [3]. We 
trained a network to identify clear sky, thin cloud, thick cloud, and 
non-sky pixels in photos taken by the Total Sky Imager [4]. The 
trained network is capable of classifying 91.9% of pixels correctly. 
An ensemble of several networks increases this to 94.6%.
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The Total Sky Imager (TSI) consists 
of a downward facing digital camera 
directed at an upward facing convex 
mirror to produce photographs of the 
sky [4]. The TSI takes a picture 
every 30 seconds, so millions of 
images are available [5]. Several TSI 
devices are in use around the world; 
we draw our data from a climate 
research facility in Oklahoma. We 
use 467,906 pictures taken from 
January to November of 2006.

A convolutional neural network learns to recognize patterns by generalizing from 
many examples. Such networks have been very successful in artificial vision tasks 
[2]. The network consists of a series of layers, each of which computes a modified 
version of the output of the previous layer. The first layer takes the image as input.

Convolutional Neural Networks

Max Pooling
A max pooling layer simply outputs, for 
each pixel, the largest value in its 
receptive field. This allows the layer to 
determine if some feature (detected by a 
previous convolutional layer) is present 
anywhere in the receptive field.

Our pilot experiments had trouble 
identifying the shadowband because their 
receptive fields were too small. Very 
large receptive fields in max pooling 
layers (e.g., 100×100) were too 
computationally expensive. We solved 
this by including two long, skinny max 
pooling layers, with 1×100 and 100×1 
receptive fields.

Convolution
A convolutional layer contains a matrix of 
numbers called a kernel. The kernel is 
combined with the receptive field (using a 
dot product) to produce each output pixel. 
This operation is effective for detecting 
edges and other features. Learning in the 
network involves adjusting these kernels to 
produce the desired output.

TSI incorporates a simple cloud segmentation algorithm that 
compares pixel values to thresholds. This can be prone to errors and 
requires tedious hand tuning to account for the specific device 
location and lighting conditions.  

We hope to move on from segmentation to classification, 
identifying which types of clouds (cumulus, etc.) are present in an 
image. Other data sources of data (radar, satellite images, manual 
observations by meteorologists, etc.) may help in this more 
challenging task.

Fifteen copies of the network were trained for several days on 
Portland State University’s Coeus computing cluster. We trained 
the network using gradient descent, minimizing cross entropy 
between the network output and the target “correct answer” (TSI’s 
segmentation image). In each training step, we selected (without 
replacement) 50 random images from our data set. The network 
was not burdened with classifying pixels that were the same in all 
of the target outputs.

Architecture

Edge detection using convolution
Images: https://commons.wikimedia.org/wiki/File:Edge_detection.png
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Each network achieved an accuracy (on images that it hadn’t seen 
before) of 91.9%. An ensemble of all fifteen networks, voting on 
each pixel, had an accuracy of 94.6%. On the specific image 
below, accuracy was 94.8%.

Intriguingly, even though our networks were only trained to 
match the default TSI segmentation, the ensemble outperforms 
the TSI in some respects, e.g., labeling birds as non-sky.
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Source code for the network is available at https://github.com/VISTAS-IVES/sky
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Cloud segmentation is the task of labeling each pixel in an image as 
clear sky, thin cloud, thick cloud, or non-sky. Non-sky pixels 
include the corners of the image, the reflection of the camera arm, 
and the moving shadowband that blocks sun glare. 

Sky image Segmentation

Each pixel in a layer derives 
from a small receptive field 
in the previous layer, 
using functions such 
as convolution and max 
pooling.

TSI image TSI segmentation Network output

The learning curve at left 
shows our best network’s 
increase in accuracy as 
training proceeds; other runs 
were similar. It does not 
appear that additional 
training would improve 
performance.


